Given a straight-line drawing of a graph, a {\em segment} is a maximal set of edges that form a line segment. Given a planar graph $G$, the {\em segment number} of $G$ is the minimum number of segments that can be achieved by any planar straight-line drawing of $G$. The {\em line cover number} of $G$ is the minimum number of lines that support all the edges of a planar straight-line drawing of $G$. Computing the segment number or the line cover number of a planar graph is $\exists\mathbb{R}$-complete and, thus, NP-hard. We study the problem of computing the segment number from the perspective of parameterized complexity. We show that this problem is fixed-parameter tractable with respect to each of the following parameters: the vertex cover number, the segment number, and the line cover number. We also consider colored versions of the segment and the line cover number.
The Euler characteristic transform (ECT) is a simple to define yet powerful representation of shape. The idea is to encode an embedded shape using sub-level sets of a a function defined based on a given direction, and then returning the Euler characteristics of these sublevel sets. Because the ECT has been shown to be injective on the space of embedded simplicial complexes, it has been used for applications spanning a range of disciplines, including plant morphology and protein structural analysis. In this survey article, we present a comprehensive overview of the Euler characteristic transform, highlighting the main idea on a simple leaf example, and surveying its its key concepts, theoretical foundations, and available applications.
In the context of computer models, calibration is the process of estimating unknown simulator parameters from observational data. Calibration is variously referred to as model fitting, parameter estimation/inference, an inverse problem, and model tuning. The need for calibration occurs in most areas of science and engineering, and has been used to estimate hard to measure parameters in climate, cardiology, drug therapy response, hydrology, and many other disciplines. Although the statistical method used for calibration can vary substantially, the underlying approach is essentially the same and can be considered abstractly. In this survey, we review the decisions that need to be taken when calibrating a model, and discuss a range of computational methods that can be used to compute Bayesian posterior distributions.
The 2-opt heuristic is a simple local search heuristic for the Travelling Salesperson Problem (TSP). Although it usually performs well in practice, its worst-case running time is poor. Attempts to reconcile this difference have used smoothed analysis, in which adversarial instances are perturbed probabilistically. We are interested in the classical model of smoothed analysis for the Euclidean TSP, in which the perturbations are Gaussian. This model was previously used by Manthey \& Veenstra, who obtained smoothed complexity bounds polynomial in $n$, the dimension $d$, and the perturbation strength $\sigma^{-1}$. However, their analysis only works for $d \geq 4$. The only previous analysis for $d \leq 3$ was performed by Englert, R\"oglin \& V\"ocking, who used a different perturbation model which can be translated to Gaussian perturbations. Their model yields bounds polynomial in $n$ and $\sigma^{-d}$, and super-exponential in $d$. As no direct analysis existed for Gaussian perturbations that yields polynomial bounds for all $d$, we perform this missing analysis. Along the way, we improve all existing smoothed complexity bounds for Euclidean 2-opt.
Panoptic segmentation assigns semantic and instance ID labels to every pixel of an image. As permutations of instance IDs are also valid solutions, the task requires learning of high-dimensional one-to-many mapping. As a result, state-of-the-art approaches use customized architectures and task-specific loss functions. We formulate panoptic segmentation as a discrete data generation problem, without relying on inductive bias of the task. A diffusion model is proposed to model panoptic masks, with a simple architecture and generic loss function. By simply adding past predictions as a conditioning signal, our method is capable of modeling video (in a streaming setting) and thereby learns to track object instances automatically. With extensive experiments, we demonstrate that our simple approach can perform competitively to state-of-the-art specialist methods in similar settings.
The problem of whether and how one can compute the twin-width of a graph -- along with an accompanying contraction sequence -- lies at the forefront of the area of algorithmic model theory. While significant effort has been aimed at obtaining a fixed-parameter approximation for the problem when parameterized by twin-width, here we approach the question from a different perspective and consider whether one can obtain (near-)optimal contraction sequences under a larger parameterization, notably the feedback edge number $k$. As our main contributions, under this parameterization we obtain (1) a linear bikernel for the problem of either computing a $2$-contraction sequence or determining that none exists and (2) an approximate fixed-parameter algorithm which computes an $\ell$-contraction sequence (for an arbitrary specified $\ell$) or determines that the twin-width of the input graph is at least $\ell$. These algorithmic results rely on newly obtained insights into the structure of optimal contraction sequences, and as a byproduct of these we also slightly tighten the bound on the twin-width of graphs with small feedback edge number.
The Self-Sovereign Identity (SSI) is a decentralized paradigm enabling full control over the data used to build and prove the identity. In Internet of Things networks with security requirements, the Self-Sovereign Identity can play a key role and bring benefits with respect to centralized identity solutions. The challenge is to make the SSI compatible with resource-constraint IoT networks. In line with this objective, the paper proposes and discusses an alternative (mutual) authentication process for IoT nodes under the same administration domain. The main idea is to combine the Decentralized IDentifier (DID)-based verification of private key ownership with the verification of a proof that the DID belongs to an evolving trusted set. The solution is built around the proof of membership notion. The paper analyzes two membership solutions, a novel solution designed by the Authors based on Merkle trees and a second one based on the adaptation of Boneh, Boyen and Shacham (BBS) group signature scheme. The paper concludes with a performance estimation and a comparative analysis.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.
Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.