We study a natural complexity measure of Boolean functions known as the (exact) rational degree. For total functions $f$, it is conjectured that $\mathrm{rdeg}(f)$ is polynomially related to $\mathrm{deg}(f)$, where $\mathrm{deg}(f)$ is the Fourier degree. Towards this conjecture, we show that symmetric functions have rational degree at least $\mathrm{deg}(f)/2$ and monotone functions have rational degree at least $\sqrt{\mathrm{deg}(f)}$. We observe that both of these lower bounds are tight. In addition, we show that all read-once depth-$d$ Boolean formulae have rational degree at least $\Omega(\mathrm{deg}(f)^{1/d})$. Furthermore, we show that almost every Boolean function on $n$ variables has rational degree at least $n/2 - O(\sqrt{n})$. In contrast to total functions, we exhibit partial functions that witness unbounded separations between rational and approximate degree, in both directions. As a consequence, we show that for quantum computers, post-selection and bounded-error are incomparable resources in the black-box model.
Hyperparameter Optimization (HPO) of Deep Learning-based models tends to be a compute resource intensive process as it usually requires to train the target model with many different hyperparameter configurations. We show that integrating model performance prediction with early stopping methods holds great potential to speed up the HPO process of deep learning models. Moreover, we propose a novel algorithm called Swift-Hyperband that can use either classical or quantum support vector regression for performance prediction and benefit from distributed High Performance Computing environments. This algorithm is tested not only for the Machine-Learned Particle Flow model used in High Energy Physics, but also for a wider range of target models from domains such as computer vision and natural language processing. Swift-Hyperband is shown to find comparable (or better) hyperparameters as well as using less computational resources in all test cases.
Graph Neural Networks (GNNs) have achieved notable success in learning from graph-structured data, owing to their ability to capture intricate dependencies and relationships between nodes. They excel in various applications, including semi-supervised node classification, link prediction, and graph generation. However, it is important to acknowledge that the majority of state-of-the-art GNN models are built upon the assumption of an in-distribution setting, which hinders their performance on real-world graphs with dynamic structures. In this article, we aim to assess the impact of training GNNs on localized subsets of the graph. Such restricted training data may lead to a model that performs well in the specific region it was trained on but fails to generalize and make accurate predictions for the entire graph. In the context of graph-based semi-supervised learning (SSL), resource constraints often lead to scenarios where the dataset is large, but only a portion of it can be labeled, affecting the model's performance. This limitation affects tasks like anomaly detection or spam detection when labeling processes are biased or influenced by human subjectivity. To tackle the challenges posed by localized training data, we approach the problem as an out-of-distribution (OOD) data issue by by aligning the distributions between the training data, which represents a small portion of labeled data, and the graph inference process that involves making predictions for the entire graph. We propose a regularization method to minimize distributional discrepancies between localized training data and graph inference, improving model performance on OOD data. Extensive tests on popular GNN models show significant performance improvement on three citation GNN benchmark datasets. The regularization approach effectively enhances model adaptation and generalization, overcoming challenges posed by OOD data.
We consider the functional inverse of the Gamma function in the complex plane, where it is multi-valued, and define a set of suitable branches by proposing a natural extension from the real case.
Various heuristic objectives for modeling hand-object interaction have been proposed in past work. However, due to the lack of a cohesive framework, these objectives often possess a narrow scope of applicability and are limited by their efficiency or accuracy. In this paper, we propose HandyPriors, a unified and general pipeline for pose estimation in human-object interaction scenes by leveraging recent advances in differentiable physics and rendering. Our approach employs rendering priors to align with input images and segmentation masks along with physics priors to mitigate penetration and relative-sliding across frames. Furthermore, we present two alternatives for hand and object pose estimation. The optimization-based pose estimation achieves higher accuracy, while the filtering-based tracking, which utilizes the differentiable priors as dynamics and observation models, executes faster. We demonstrate that HandyPriors attains comparable or superior results in the pose estimation task, and that the differentiable physics module can predict contact information for pose refinement. We also show that our approach generalizes to perception tasks, including robotic hand manipulation and human-object pose estimation in the wild.
The Euclidean algorithm is one of the oldest algorithms known to mankind. Given two integral numbers $a_1$ and $a_2$, it computes the greatest common divisor (gcd) of $a_1$ and $a_2$ in a very elegant way. From a lattice perspective, it computes a basis of the sum of two one-dimensional lattices $a_1 \mathbb{Z}$ and $a_2 \mathbb{Z}$ as $\gcd(a_1,a_2) \mathbb{Z} = a_1 \mathbb{Z} + a_2 \mathbb{Z}$. In this paper, we show that the classical Euclidean algorithm can be adapted in a very natural way to compute a basis of a general lattice $L(a_1, \ldots , a_m)$ given vectors $a_1, \ldots , a_m \in \mathbb{Z}^n$ with $m> \mathrm{rank}(a_1, \ldots ,a_m)$. Similar to the Euclidean algorithm, our algorithm is very easy to describe and implement and can be written within 12 lines of pseudocode. While the Euclidean algorithm halves the largest number in every iteration, our generalized algorithm halves the determinant of a full rank subsystem leading to at most $\log (\det B)$ many iterations, for some initial subsystem $B$. Therefore, we can compute a basis of the lattice using at most $\tilde{O}((m-n)n\log(\det B) + mn^{\omega-1}\log(||A||_\infty))$ arithmetic operations, where $\omega$ is the matrix multiplication exponent and $A = (a_1, \ldots, a_m)$. Even using the worst case Hadamard bound for the determinant, our algorithm improves upon existing algorithm. Another major advantage of our algorithm is that we can bound the entries of the resulting lattice basis by $\tilde{O}(n^2\cdot ||A||_{\infty})$ using a simple pivoting rule. This is in contrast to the typical approach for computing lattice basis, where the Hermite normal form (HNF) is used. In the HNF, entries can be as large as the determinant and hence can only be bounded by an exponential term.
We study the interpretation of the lambda-calculus in a framework based on tropical mathematics, and we show that it provides a unifying framework for two well-developed quantitative approaches to program semantics: on the one hand program metrics, based on the analysis of program sensitivity via Lipschitz conditions, on the other hand resource analysis, based on linear logic and higher-order program differentiation. To do that we focus on the semantic arising from the relational model weighted over the tropical semiring, and we discuss its application to the study of "best case" program behavior for languages with probabilistic and non-deterministic effects. Finally, we show that a general foundation for this approach is provided by an abstract correspondence between tropical algebra and Lawvere's theory of generalized metric spaces.
We consider geometric problems on planar $n^2$-point sets in the congested clique model. Initially, each node in the $n$-clique network holds a batch of $n$ distinct points in the Euclidean plane given by $O(\log n)$-bit coordinates. In each round, each node can send a distinct $O(\log n)$-bit message to each other node in the clique and perform unlimited local computations. We show that the convex hull of the input $n^2$-point set can be constructed in $O(\min\{ h,\log n\})$ rounds, where $h$ is the size of the hull, on the congested clique. We also show that a triangulation of the input $n^2$-point set can be constructed in $O(\log^2n)$ rounds on the congested clique. Finally, we demonstrate that the Voronoi diagram of $n^2$ points with $O(\log n)$-bit coordinates drawn uniformly at random from a unit square can be computed within the square with high probability in $O(1)$ rounds on the congested clique.
An initial procedure in text-as-data applications is text preprocessing. One of the typical steps, which can substantially facilitate computations, consists in removing infrequent words believed to provide limited information about the corpus. Despite popularity of vocabulary pruning, not many guidelines on how to implement it are available in the literature. The aim of the paper is to fill this gap by examining the effects of removing infrequent words for the quality of topics estimated using Latent Dirichlet Allocation. The analysis is based on Monte Carlo experiments taking into account different criteria for infrequent terms removal and various evaluation metrics. The results indicate that pruning is beneficial and that the share of vocabulary which might be eliminated can be quite considerable.
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.