This paper presents comparison of custom ensemble models with the models trained using existing libraries Like Xgboost, Scikit Learn, etc. in case of predictive equipment failure for the case of oil extracting equipment setup. The dataset that is used contains many missing values and the paper proposes different model-based data imputation strategies to impute the missing values. The architecture and the training and testing process of the custom ensemble models are explained in detail.
It is widely acknowledged that transparency of automated decision making is crucial for deployability of intelligent systems, and explaining the reasons why some decisions are "good" and some are not is a way to achieving this transparency. We consider two variants of decision making, where "good" decisions amount to alternatives (i) meeting "most" goals, and (ii) meeting "most preferred" goals. We then define, for each variant and notion of "goodness" (corresponding to a number of existing notions in the literature), explanations in two formats, for justifying the selection of an alternative to audiences with differing needs and competences: lean explanations, in terms of goals satisfied and, for some notions of "goodness", alternative decisions, and argumentative explanations, reflecting the decision process leading to the selection, while corresponding to the lean explanations. To define argumentative explanations, we use assumption-based argumentation (ABA), a well-known form of structured argumentation. Specifically, we define ABA frameworks such that "good" decisions are admissible ABA arguments and draw argumentative explanations from dispute trees sanctioning this admissibility. Finally, we instantiate our overall framework for explainable decision-making to accommodate connections between goals and decisions in terms of decision graphs incorporating defeasible and non-defeasible information.
Topk queries and skyline queries have well explored limitations which recent research have tried to complete through new techniques. In this survey, after resuming such limitations, we consider Restricted Skyline Queries, ORD and ORU approach, Krepresentative minimization queries, Skyline ordering queries, UTK queries approach and Skyrank that aim to overcome them. After introducing and comparing their main concepts, pros and cons, we briefly report the algorithms and confront some of the experimental data collected from the bibliography. To conclude the paper, we summarize the results presented with a short guide on how to select the best approach according to specific needs.
Neural networks have shown tremendous growth in recent years to solve numerous problems. Various types of neural networks have been introduced to deal with different types of problems. However, the main goal of any neural network is to transform the non-linearly separable input data into more linearly separable abstract features using a hierarchy of layers. These layers are combinations of linear and nonlinear functions. The most popular and common non-linearity layers are activation functions (AFs), such as Logistic Sigmoid, Tanh, ReLU, ELU, Swish and Mish. In this paper, a comprehensive overview and survey is presented for AFs in neural networks for deep learning. Different classes of AFs such as Logistic Sigmoid and Tanh based, ReLU based, ELU based, and Learning based are covered. Several characteristics of AFs such as output range, monotonicity, and smoothness are also pointed out. A performance comparison is also performed among 18 state-of-the-art AFs with different networks on different types of data. The insights of AFs are presented to benefit the researchers for doing further research and practitioners to select among different choices. The code used for experimental comparison is released at: \url{//github.com/shivram1987/ActivationFunctions}.
With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.
Real-world applications often combine learning and optimization problems on graphs. For instance, our objective may be to cluster the graph in order to detect meaningful communities (or solve other common graph optimization problems such as facility location, maxcut, and so on). However, graphs or related attributes are often only partially observed, introducing learning problems such as link prediction which must be solved prior to optimization. We propose an approach to integrate a differentiable proxy for common graph optimization problems into training of machine learning models for tasks such as link prediction. This allows the model to focus specifically on the downstream task that its predictions will be used for. Experimental results show that our end-to-end system obtains better performance on example optimization tasks than can be obtained by combining state of the art link prediction methods with expert-designed graph optimization algorithms.
Predicting interactions between structured entities lies at the core of numerous tasks such as drug regimen and new material design. In recent years, graph neural networks have become attractive. They represent structured entities as graphs and then extract features from each individual graph using graph convolution operations. However, these methods have some limitations: i) their networks only extract features from a fix-sized subgraph structure (i.e., a fix-sized receptive field) of each node, and ignore features in substructures of different sizes, and ii) features are extracted by considering each entity independently, which may not effectively reflect the interaction between two entities. To resolve these problems, we present MR-GNN, an end-to-end graph neural network with the following features: i) it uses a multi-resolution based architecture to extract node features from different neighborhoods of each node, and, ii) it uses dual graph-state long short-term memory networks (L-STMs) to summarize local features of each graph and extracts the interaction features between pairwise graphs. Experiments conducted on real-world datasets show that MR-GNN improves the prediction of state-of-the-art methods.
Inferencing with network data necessitates the mapping of its nodes into a vector space, where the relationships are preserved. However, with multi-layered networks, where multiple types of relationships exist for the same set of nodes, it is crucial to exploit the information shared between layers, in addition to the distinct aspects of each layer. In this paper, we propose a novel approach that first obtains node embeddings in all layers jointly via DeepWalk on a \textit{supra} graph, which allows interactions between layers, and then fine-tunes the embeddings to encourage cohesive structure in the latent space. With empirical studies in node classification, link prediction and multi-layered community detection, we show that the proposed approach outperforms existing single- and multi-layered network embedding algorithms on several benchmarks. In addition to effectively scaling to a large number of layers (tested up to $37$), our approach consistently produces highly modular community structure, even when compared to methods that directly optimize for the modularity function.
To solve complex real-world problems with reinforcement learning, we cannot rely on manually specified reward functions. Instead, we can have humans communicate an objective to the agent directly. In this work, we combine two approaches to learning from human feedback: expert demonstrations and trajectory preferences. We train a deep neural network to model the reward function and use its predicted reward to train an DQN-based deep reinforcement learning agent on 9 Atari games. Our approach beats the imitation learning baseline in 7 games and achieves strictly superhuman performance on 2 games without using game rewards. Additionally, we investigate the goodness of fit of the reward model, present some reward hacking problems, and study the effects of noise in the human labels.
In this work, we compare three different modeling approaches for the scores of soccer matches with regard to their predictive performances based on all matches from the four previous FIFA World Cups 2002 - 2014: Poisson regression models, random forests and ranking methods. While the former two are based on the teams' covariate information, the latter method estimates adequate ability parameters that reflect the current strength of the teams best. Within this comparison the best-performing prediction methods on the training data turn out to be the ranking methods and the random forests. However, we show that by combining the random forest with the team ability parameters from the ranking methods as an additional covariate we can improve the predictive power substantially. Finally, this combination of methods is chosen as the final model and based on its estimates, the FIFA World Cup 2018 is simulated repeatedly and winning probabilities are obtained for all teams. The model slightly favors Spain before the defending champion Germany. Additionally, we provide survival probabilities for all teams and at all tournament stages as well as the most probable tournament outcome.
Machine Learning is a widely-used method for prediction generation. These predictions are more accurate when the model is trained on a larger dataset. On the other hand, the data is usually divided amongst different entities. For privacy reasons, the training can be done locally and then the model can be safely aggregated amongst the participants. However, if there are only two participants in \textit{Collaborative Learning}, the safe aggregation loses its power since the output of the training already contains much information about the participants. To resolve this issue, they must employ privacy-preserving mechanisms, which inevitably affect the accuracy of the model. In this paper, we model the training process as a two-player game where each player aims to achieve a higher accuracy while preserving its privacy. We introduce the notion of \textit{Price of Privacy}, a novel approach to measure the effect of privacy protection on the accuracy of the model. We develop a theoretical model for different player types, and we either find or prove the existence of a Nash Equilibrium with some assumptions. Moreover, we confirm these assumptions via a Recommendation Systems use case: for a specific learning algorithm, we apply three privacy-preserving mechanisms on two real-world datasets. Finally, as a complementary work for the designed game, we interpolate the relationship between privacy and accuracy for this use case and present three other methods to approximate it in a real-world scenario.