Two-timescale stochastic approximation (TTSA) is among the most general frameworks for iterative stochastic algorithms. This includes well-known stochastic optimization methods such as SGD variants and those designed for bilevel or minimax problems, as well as reinforcement learning like the family of gradient-based temporal difference (GTD) algorithms. In this paper, we conduct an in-depth asymptotic analysis of TTSA under controlled Markovian noise via central limit theorem (CLT), uncovering the coupled dynamics of TTSA influenced by the underlying Markov chain, which has not been addressed by previous CLT results of TTSA only with Martingale difference noise. Building upon our CLT, we expand its application horizon of efficient sampling strategies from vanilla SGD to a wider TTSA context in distributed learning, thus broadening the scope of Hu et al. (2022). In addition, we leverage our CLT result to deduce the statistical properties of GTD algorithms with nonlinear function approximation using Markovian samples and show their identical asymptotic performance, a perspective not evident from current finite-time bounds.
FEVEROUS is a benchmark and research initiative focused on fact extraction and verification tasks involving unstructured text and structured tabular data. In FEVEROUS, existing works often rely on extensive preprocessing and utilize rule-based transformations of data, leading to potential context loss or misleading encodings. This paper introduces a simple yet powerful model that nullifies the need for modality conversion, thereby preserving the original evidence's context. By leveraging pre-trained models on diverse text and tabular datasets and by incorporating a lightweight attention-based mechanism, our approach efficiently exploits latent connections between different data types, thereby yielding comprehensive and reliable verdict predictions. The model's modular structure adeptly manages multi-modal information, ensuring the integrity and authenticity of the original evidence are uncompromised. Comparative analyses reveal that our approach exhibits competitive performance, aligning itself closely with top-tier models on the FEVEROUS benchmark.
Sample efficiency is a crucial problem in deep reinforcement learning. Recent algorithms, such as REDQ and DroQ, found a way to improve the sample efficiency by increasing the update-to-data (UTD) ratio to 20 gradient update steps on the critic per environment sample. However, this comes at the expense of a greatly increased computational cost. To reduce this computational burden, we introduce CrossQ: A lightweight algorithm for continuous control tasks that makes careful use of Batch Normalization and removes target networks to surpass the current state-of-the-art in sample efficiency while maintaining a low UTD ratio of 1. Notably, CrossQ does not rely on advanced bias-reduction schemes used in current methods. CrossQ's contributions are threefold: (1) it matches or surpasses current state-of-the-art methods in terms of sample efficiency, (2) it substantially reduces the computational cost compared to REDQ and DroQ, (3) it is easy to implement, requiring just a few lines of code on top of SAC.
Two algorithms for computing the rational univariate representation of zero-dimensional ideals with parameters are presented in the paper. Different from the rational univariate representation of zero-dimensional ideals without parameters, the number of zeros of zero-dimensional ideals with parameters under various specializations is different, which leads to choosing and checking the separating element, the key to computing the rational univariate representation, is difficult. In order to pick out the separating element, by partitioning the parameter space we can ensure that under each branch the ideal has the same number of zeros. Subsequently with the help of the extended subresultant theorem for parametric cases, two ideas are given to conduct the further partition of parameter space for choosing and checking the separating element. Based on these, we give two algorithms for computing rational univariate representations of zero-dimensional ideals with parameters. Furthermore, the two algorithms have been implemented on the computer algebra system Singular. Experimental data show that the second algorithm has the better performance in contrast to the first one.
We delineate the development of a mind-mapping system designed concurrently for both VR and desktop platforms. Employing an iterative methodology with groups of users, we systematically examined and improved various facets of our system, including interactions, communication mechanisms and gamification elements, to streamline the mind-mapping process while augmenting situational awareness and promoting active engagement among collaborators. We also report our observational findings on these facets from this iterative design process.
In recent years, the application of multimodal large language models (MLLM) in various fields has achieved remarkable success. However, as the foundation model for many downstream tasks, current MLLMs are composed of the well-known Transformer network, which has a less efficient quadratic computation complexity. To improve the efficiency of such basic models, we propose Cobra, a linear computational complexity MLLM. Specifically, Cobra integrates the efficient Mamba language model into the visual modality. Moreover, we explore and study various modal fusion schemes to create an effective multi-modal Mamba. Extensive experiments demonstrate that (1) Cobra achieves extremely competitive performance with current computationally efficient state-of-the-art methods, e.g., LLaVA-Phi, TinyLLaVA, and MobileVLM v2, and has faster speed due to Cobra's linear sequential modeling. (2) Interestingly, the results of closed-set challenging prediction benchmarks show that Cobra performs well in overcoming visual illusions and spatial relationship judgments. (3) Notably, Cobra even achieves comparable performance to LLaVA with about 43% of the number of parameters. We will make all codes of Cobra open-source and hope that the proposed method can facilitate future research on complexity problems in MLLM. Our project page is available at: //sites.google.com/view/cobravlm.
With the continuous growth in the number of parameters of transformer-based pretrained language models (PLMs), particularly the emergence of large language models (LLMs) with billions of parameters, many natural language processing (NLP) tasks have demonstrated remarkable success. However, the enormous size and computational demands of these models pose significant challenges for adapting them to specific downstream tasks, especially in environments with limited computational resources. Parameter Efficient Fine-Tuning (PEFT) offers an effective solution by reducing the number of fine-tuning parameters and memory usage while achieving comparable performance to full fine-tuning. The demands for fine-tuning PLMs, especially LLMs, have led to a surge in the development of PEFT methods, as depicted in Fig. 1. In this paper, we present a comprehensive and systematic review of PEFT methods for PLMs. We summarize these PEFT methods, discuss their applications, and outline future directions. Furthermore, we conduct experiments using several representative PEFT methods to better understand their effectiveness in parameter efficiency and memory efficiency. By offering insights into the latest advancements and practical applications, this survey serves as an invaluable resource for researchers and practitioners seeking to navigate the challenges and opportunities presented by PEFT in the context of PLMs.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.