亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Input distribution shift is one of the vital problems in unsupervised domain adaptation (UDA). The most popular UDA approaches focus on domain-invariant representation learning, trying to align the features from different domains into similar feature distributions. However, these approaches ignore the direct alignment of input word distributions between domains, which is a vital factor in word-level classification tasks such as cross-domain NER. In this work, we shed new light on cross-domain NER by introducing a subword-level solution, X-Piece, for input word-level distribution shift in NER. Specifically, we re-tokenize the input words of the source domain to approach the target subword distribution, which is formulated and solved as an optimal transport problem. As this approach focuses on the input level, it can also be combined with previous DIRL methods for further improvement. Experimental results show the effectiveness of the proposed method based on BERT-tagger on four benchmark NER datasets. Also, the proposed method is proved to benefit DIRL methods such as DANN.

相關內容

命名實體識別(NER)(也稱為實體標識,實體組塊和實體提取)是信息抽取的子任務,旨在將非結構化文本中提到的命名實體定位和分類為預定義類別,例如人員姓名、地名、機構名、專有名詞等。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Machine learning systems, especially the methods based on deep learning, enjoy great success in modern computer vision tasks under experimental settings. Generally, these classic deep learning methods are built on the \emph{i.i.d.} assumption, supposing the training and test data are drawn from a similar distribution independently and identically. However, the aforementioned \emph{i.i.d.} assumption is in general unavailable in the real-world scenario, and as a result, leads to sharp performance decay of deep learning algorithms. Behind this, domain shift is one of the primary factors to be blamed. In order to tackle this problem, we propose using \textbf{Po}tential \textbf{E}nergy \textbf{R}anking (PoER) to decouple the object feature and the domain feature (\emph{i.e.,} appearance feature) in given images, promoting the learning of label-discriminative features while filtering out the irrelevant correlations between the objects and the background. PoER helps the neural networks to capture label-related features which contain the domain information first in shallow layers and then distills the label-discriminative representations out progressively, enforcing the neural networks to be aware of the characteristic of objects and background which is vital to the generation of domain-invariant features. PoER reports superior performance on domain generalization benchmarks, improving the average top-1 accuracy by at least 1.20\% compared to the existing methods. Moreover, we use PoER in the ECCV 2022 NICO Challenge\footnote{//nicochallenge.com}, achieving top place with only a vanilla ResNet-18. The code has been made available at //github.com/ForeverPs/PoER.

Existing approaches to image captioning usually generate the sentence word-by-word from left to right, with the constraint of conditioned on local context including the given image and history generated words. There have been many studies target to make use of global information during decoding, e.g., iterative refinement. However, it is still under-explored how to effectively and efficiently incorporate the future context. To respond to this issue, inspired by that Non-Autoregressive Image Captioning (NAIC) can leverage two-side relation with modified mask operation, we aim to graft this advance to the conventional Autoregressive Image Captioning (AIC) model while maintaining the inference efficiency without extra time cost. Specifically, AIC and NAIC models are first trained combined with shared visual encoders, forcing the visual encoder to contain sufficient and valid future context; then the AIC model is encouraged to capture the causal dynamics of cross-layer interchanging from NAIC model on its unconfident words, which follows a teacher-student paradigm and optimized with the distribution calibration training objective. Empirical evidences demonstrate that our proposed approach clearly surpass the state-of-the-art baselines in both automatic metrics and human evaluations on the MS COCO benchmark. The source code is available at: //github.com/feizc/Future-Caption.

Domain generalization (DG) aims to learn a generalized model to an unseen target domain using only limited source domains. Previous attempts to DG fail to learn domain-invariant representations only from the source domains due to the significant domain shifts between training and test domains. Instead, we re-formulate the DG objective using mutual information with the oracle model, a model generalized to any possible domain. We derive a tractable variational lower bound via approximating the oracle model by a pre-trained model, called Mutual Information Regularization with Oracle (MIRO). Our extensive experiments show that MIRO significantly improves the out-of-distribution performance. Furthermore, our scaling experiments show that the larger the scale of the pre-trained model, the greater the performance improvement of MIRO. Source code is available at //github.com/kakaobrain/miro.

This paper introduces video domain generalization where most video classification networks degenerate due to the lack of exposure to the target domains of divergent distributions. We observe that the global temporal features are less generalizable, due to the temporal domain shift that videos from other unseen domains may have an unexpected absence or misalignment of the temporal relations. This finding has motivated us to solve video domain generalization by effectively learning the local-relation features of different timescales that are more generalizable, and exploiting them along with the global-relation features to maintain the discriminability. This paper presents the VideoDG framework with two technical contributions. The first is a new deep architecture named the Adversarial Pyramid Network, which improves the generalizability of video features by capturing the local-relation, global-relation, and cross-relation features progressively. On the basis of pyramid features, the second contribution is a new and robust approach of adversarial data augmentation that can bridge different video domains by improving the diversity and quality of augmented data. We construct three video domain generalization benchmarks in which domains are divided according to different datasets, different consequences of actions, or different camera views, respectively. VideoDG consistently outperforms the combinations of previous video classification models and existing domain generalization methods on all benchmarks.

Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.

Leveraging datasets available to learn a model with high generalization ability to unseen domains is important for computer vision, especially when the unseen domain's annotated data are unavailable. We study a novel and practical problem of Open Domain Generalization (OpenDG), which learns from different source domains to achieve high performance on an unknown target domain, where the distributions and label sets of each individual source domain and the target domain can be different. The problem can be generally applied to diverse source domains and widely applicable to real-world applications. We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations. We augment domains on both feature-level by a new Dirichlet mixup and label-level by distilled soft-labeling, which complements each domain with missing classes and other domain knowledge. We conduct meta-learning over domains by designing new meta-learning tasks and losses to preserve domain unique knowledge and generalize knowledge across domains simultaneously. Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.

The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.

Named entity recognition (NER) in Chinese is essential but difficult because of the lack of natural delimiters. Therefore, Chinese Word Segmentation (CWS) is usually considered as the first step for Chinese NER. However, models based on word-level embeddings and lexicon features often suffer from segmentation errors and out-of-vocabulary (OOV) words. In this paper, we investigate a Convolutional Attention Network called CAN for Chinese NER, which consists of a character-based convolutional neural network (CNN) with local-attention layer and a gated recurrent unit (GRU) with global self-attention layer to capture the information from adjacent characters and sentence contexts. Also, compared to other models, not depending on any external resources like lexicons and employing small size of char embeddings make our model more practical. Extensive experimental results show that our approach outperforms state-of-the-art methods without word embedding and external lexicon resources on different domain datasets including Weibo, MSRA and Chinese Resume NER dataset.

Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司