亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Bidirectional reflectance distribution functions (BRDFs) are pervasively used in computer graphics to produce realistic physically-based appearance. In recent years, several works explored using neural networks to represent BRDFs, taking advantage of neural networks' high compression rate and their ability to fit highly complex functions. However, once represented, the BRDFs will be fixed and therefore lack flexibility to take part in follow-up operations. In this paper, we present a form of "Neural BRDF algebra", and focus on both representation and operations of BRDFs at the same time. We propose a representation neural network to compress BRDFs into latent vectors, which is able to represent BRDFs accurately. We further propose several operations that can be applied solely in the latent space, such as layering and interpolation. Spatial variation is straightforward to achieve by using textures of latent vectors. Furthermore, our representation can be efficiently evaluated and sampled, providing a competitive solution to more expensive Monte Carlo layering approaches.

相關內容

神經網絡(Neural Networks)是世界上三個最古老的神經建模學會的檔案期刊:國際神經網絡學會(INNS)、歐洲神經網絡學會(ENNS)和日本神經網絡學會(JNNS)。神經網絡提供了一個論壇,以發展和培育一個國際社會的學者和實踐者感興趣的所有方面的神經網絡和相關方法的計算智能。神經網絡歡迎高質量論文的提交,有助于全面的神經網絡研究,從行為和大腦建模,學習算法,通過數學和計算分析,系統的工程和技術應用,大量使用神經網絡的概念和技術。這一獨特而廣泛的范圍促進了生物和技術研究之間的思想交流,并有助于促進對生物啟發的計算智能感興趣的跨學科社區的發展。因此,神經網絡編委會代表的專家領域包括心理學,神經生物學,計算機科學,工程,數學,物理。該雜志發表文章、信件和評論以及給編輯的信件、社論、時事、軟件調查和專利信息。文章發表在五個部分之一:認知科學,神經科學,學習系統,數學和計算分析、工程和應用。 官網地址:

Fonts are ubiquitous across documents and come in a variety of styles. They are either represented in a native vector format or rasterized to produce fixed resolution images. In the first case, the non-standard representation prevents benefiting from latest network architectures for neural representations; while, in the latter case, the rasterized representation, when encoded via networks, results in loss of data fidelity, as font-specific discontinuities like edges and corners are difficult to represent using neural networks. Based on the observation that complex fonts can be represented by a superposition of a set of simpler occupancy functions, we introduce \textit{multi-implicits} to represent fonts as a permutation-invariant set of learned implict functions, without losing features (e.g., edges and corners). However, while multi-implicits locally preserve font features, obtaining supervision in the form of ground truth multi-channel signals is a problem in itself. Instead, we propose how to train such a representation with only local supervision, while the proposed neural architecture directly finds globally consistent multi-implicits for font families. We extensively evaluate the proposed representation for various tasks including reconstruction, interpolation, and synthesis to demonstrate clear advantages with existing alternatives. Additionally, the representation naturally enables glyph completion, wherein a single characteristic font is used to synthesize a whole font family in the target style.

Recently, various view synthesis distortion estimation models have been studied to better serve for 3-D video coding. However, they can hardly model the relationship quantitatively among different levels of depth changes, texture degeneration, and the view synthesis distortion (VSD), which is crucial for rate-distortion optimization and rate allocation. In this paper, an auto-weighted layer representation based view synthesis distortion estimation model is developed. Firstly, the sub-VSD (S-VSD) is defined according to the level of depth changes and their associated texture degeneration. After that, a set of theoretical derivations demonstrate that the VSD can be approximately decomposed into the S-VSDs multiplied by their associated weights. To obtain the S-VSDs, a layer-based representation of S-VSD is developed, where all the pixels with the same level of depth changes are represented with a layer to enable efficient S-VSD calculation at the layer level. Meanwhile, a nonlinear mapping function is learnt to accurately represent the relationship between the VSD and S-VSDs, automatically providing weights for S-VSDs during the VSD estimation. To learn such function, a dataset of VSD and its associated S-VSDs are built. Experimental results show that the VSD can be accurately estimated with the weights learnt by the nonlinear mapping function once its associated S-VSDs are available. The proposed method outperforms the relevant state-of-the-art methods in both accuracy and efficiency. The dataset and source code of the proposed method will be available at //github.com/jianjin008/.

We propose a novel neural representation for videos (NeRV) which encodes videos in neural networks. Unlike conventional representations that treat videos as frame sequences, we represent videos as neural networks taking frame index as input. Given a frame index, NeRV outputs the corresponding RGB image. Video encoding in NeRV is simply fitting a neural network to video frames and decoding process is a simple feedforward operation. As an image-wise implicit representation, NeRV output the whole image and shows great efficiency compared to pixel-wise implicit representation, improving the encoding speed by 25x to 70x, the decoding speed by 38x to 132x, while achieving better video quality. With such a representation, we can treat videos as neural networks, simplifying several video-related tasks. For example, conventional video compression methods are restricted by a long and complex pipeline, specifically designed for the task. In contrast, with NeRV, we can use any neural network compression method as a proxy for video compression, and achieve comparable performance to traditional frame-based video compression approaches (H.264, HEVC \etc). Besides compression, we demonstrate the generalization of NeRV for video denoising. The source code and pre-trained model can be found at //github.com/haochen-rye/NeRV.git.

Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.

Since real-world objects and their interactions are often multi-modal and multi-typed, heterogeneous networks have been widely used as a more powerful, realistic, and generic superclass of traditional homogeneous networks (graphs). Meanwhile, representation learning (\aka~embedding) has recently been intensively studied and shown effective for various network mining and analytical tasks. In this work, we aim to provide a unified framework to deeply summarize and evaluate existing research on heterogeneous network embedding (HNE), which includes but goes beyond a normal survey. Since there has already been a broad body of HNE algorithms, as the first contribution of this work, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms. Moreover, existing HNE algorithms, though mostly claimed generic, are often evaluated on different datasets. Understandable due to the application favor of HNE, such indirect comparisons largely hinder the proper attribution of improved task performance towards effective data preprocessing and novel technical design, especially considering the various ways possible to construct a heterogeneous network from real-world application data. Therefore, as the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and \etc.~from different sources, towards handy and fair evaluations of HNE algorithms. As the third contribution, we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.

Perturbations targeting the graph structure have proven to be extremely effective in reducing the performance of Graph Neural Networks (GNNs), and traditional defenses such as adversarial training do not seem to be able to improve robustness. This work is motivated by the observation that adversarially injected edges effectively can be viewed as additional samples to a node's neighborhood aggregation function, which results in distorted aggregations accumulating over the layers. Conventional GNN aggregation functions, such as a sum or mean, can be distorted arbitrarily by a single outlier. We propose a robust aggregation function motivated by the field of robust statistics. Our approach exhibits the largest possible breakdown point of 0.5, which means that the bias of the aggregation is bounded as long as the fraction of adversarial edges of a node is less than 50\%. Our novel aggregation function, Soft Medoid, is a fully differentiable generalization of the Medoid and therefore lends itself well for end-to-end deep learning. Equipping a GNN with our aggregation improves the robustness with respect to structure perturbations on Cora ML by a factor of 3 (and 5.5 on Citeseer) and by a factor of 8 for low-degree nodes.

Mining graph data has become a popular research topic in computer science and has been widely studied in both academia and industry given the increasing amount of network data in the recent years. However, the huge amount of network data has posed great challenges for efficient analysis. This motivates the advent of graph representation which maps the graph into a low-dimension vector space, keeping original graph structure and supporting graph inference. The investigation on efficient representation of a graph has profound theoretical significance and important realistic meaning, we therefore introduce some basic ideas in graph representation/network embedding as well as some representative models in this chapter.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Network embedding has attracted an increasing attention over the past few years. As an effective approach to solve graph mining problems, network embedding aims to learn a low-dimensional feature vector representation for each node of a given network. The vast majority of existing network embedding algorithms, however, are only designed for unsigned networks, and the signed networks containing both positive and negative links, have pretty distinct properties from the unsigned counterpart. In this paper, we propose a deep network embedding model to learn the low-dimensional node vector representations with structural balance preservation for the signed networks. The model employs a semi-supervised stacked auto-encoder to reconstruct the adjacency connections of a given signed network. As the adjacency connections are overwhelmingly positive in the real-world signed networks, we impose a larger penalty to make the auto-encoder focus more on reconstructing the scarce negative links than the abundant positive links. In addition, to preserve the structural balance property of signed networks, we design the pairwise constraints to make the positively connected nodes much closer than the negatively connected nodes in the embedding space. Based on the network representations learned by the proposed model, we conduct link sign prediction and community detection in signed networks. Extensive experimental results in real-world datasets demonstrate the superiority of the proposed model over the state-of-the-art network embedding algorithms for graph representation learning in signed networks.

In this paper, a novel video classification methodology is presented that aims to recognize different categories of third-person videos efficiently. The idea is to keep track of motion in videos by following optical flow elements over time. To classify the resulted motion time series efficiently, the idea is letting the machine to learn temporal features along the time dimension. This is done by training a multi-channel one dimensional Convolutional Neural Network (1D-CNN). Since CNNs represent the input data hierarchically, high level features are obtained by further processing of features in lower level layers. As a result, in the case of time series, long-term temporal features are extracted from short-term ones. Besides, the superiority of the proposed method over most of the deep-learning based approaches is that we only try to learn representative temporal features along the time dimension. This reduces the number of learning parameters significantly which results in trainability of our method on even smaller datasets. It is illustrated that the proposed method could reach state-of-the-art results on two public datasets UCF11 and jHMDB with the aid of a more efficient feature vector representation.

北京阿比特科技有限公司