{mayi_des}
In MRI, images of the same contrast (e.g., T$_1$) from the same subject can exhibit noticeable differences when acquired using different hardware, sequences, or scan parameters. These differences in images create a domain gap that needs to be bridged by a step called image harmonization, to process the images successfully using conventional or deep learning-based image analysis (e.g., segmentation). Several methods, including deep learning-based approaches, have been proposed to achieve image harmonization. However, they often require datasets from multiple domains for deep learning training and may still be unsuccessful when applied to images from unseen domains. To address this limitation, we propose a novel concept called `Blind Harmonization', which utilizes only target domain data for training but still has the capability to harmonize images from unseen domains. For the implementation of blind harmonization, we developed BlindHarmony using an unconditional flow model trained on target domain data. The harmonized image is optimized to have a correlation with the input source domain image while ensuring that the latent vector of the flow model is close to the center of the Gaussian distribution. BlindHarmony was evaluated on both simulated and real datasets and compared to conventional methods. BlindHarmony demonstrated noticeable performance on both datasets, highlighting its potential for future use in clinical settings. The source code is available at: //github.com/SNU-LIST/BlindHarmony
The recent success of text-to-image generation diffusion models has also revolutionized semantic image editing, enabling the manipulation of images based on query/target texts. Despite these advancements, a significant challenge lies in the potential introduction of contextual prior bias in pre-trained models during image editing, e.g., making unexpected modifications to inappropriate regions. To address this issue, we present a novel approach called Dual-Cycle Diffusion, which generates an unbiased mask to guide image editing. The proposed model incorporates a Bias Elimination Cycle that consists of both a forward path and an inverted path, each featuring a Structural Consistency Cycle to ensure the preservation of image content during the editing process. The forward path utilizes the pre-trained model to produce the edited image, while the inverted path converts the result back to the source image. The unbiased mask is generated by comparing differences between the processed source image and the edited image to ensure that both conform to the same distribution. Our experiments demonstrate the effectiveness of the proposed method, as it significantly improves the D-CLIP score from 0.272 to 0.283. The code will be available at //github.com/JohnDreamer/DualCycleDiffsion.
Text-to-image diffusion models have demonstrated an unparalleled ability to generate high-quality, diverse images from a textual prompt. However, the internal representations learned by these models remain an enigma. In this work, we present Conceptor, a novel method to interpret the internal representation of a textual concept by a diffusion model. This interpretation is obtained by decomposing the concept into a small set of human-interpretable textual elements. Applied over the state-of-the-art Stable Diffusion model, Conceptor reveals non-trivial structures in the representations of concepts. For example, we find surprising visual connections between concepts, that transcend their textual semantics. We additionally discover concepts that rely on mixtures of exemplars, biases, renowned artistic styles, or a simultaneous fusion of multiple meanings of the concept. Through a large battery of experiments, we demonstrate Conceptor's ability to provide meaningful, robust, and faithful decompositions for a wide variety of abstract, concrete, and complex textual concepts, while allowing to naturally connect each decomposition element to its corresponding visual impact on the generated images. Our code will be available at: //hila-chefer.github.io/Conceptor/
Network alignment is the task of establishing one-to-one correspondences between the nodes of different graphs and finds a plethora of applications in high-impact domains. However, this task is known to be NP-hard in its general form, and existing algorithms do not scale up as the size of the graphs increases. To tackle both challenges we propose a novel generalized graph autoencoder architecture, designed to extract powerful and robust node embeddings, that are tailored to the alignment task. We prove that the generated embeddings are associated with the eigenvalues and eigenvectors of the graphs and can achieve more accurate alignment compared to classical spectral methods. Our proposed framework also leverages transfer learning and data augmentation to achieve efficient network alignment at a very large scale without retraining. Extensive experiments on both network and sub-network alignment with real-world graphs provide corroborating evidence supporting the effectiveness and scalability of the proposed approach.
Large Language Models (LLMs) have the ability to solve a variety of tasks, such as text summarization and mathematical questions, just out of the box, but they are often trained with a single task in mind. Due to high computational costs, the current trend is to use prompt instruction tuning to better adjust monolithic, pretrained LLMs for new -- but often individual -- downstream tasks. Thus, how one would expand prompt tuning to handle -- concomitantly -- heterogeneous tasks and data distributions is a widely open question. To address this gap, we suggest the use of \emph{Mixture of Prompts}, or MoPs, associated with smart gating functionality: the latter -- whose design is one of the contributions of this paper -- can identify relevant skills embedded in different groups of prompts and dynamically assign combined experts (i.e., collection of prompts), based on the target task. Additionally, MoPs are empirically agnostic to any model compression technique applied -- for efficiency reasons -- as well as instruction data source and task composition. In practice, MoPs can simultaneously mitigate prompt training "interference" in multi-task, multi-source scenarios (e.g., task and data heterogeneity across sources), as well as possible implications from model approximations. As a highlight, MoPs manage to decrease final perplexity from $\sim20\%$ up to $\sim70\%$, as compared to baselines, in the federated scenario, and from $\sim 3\%$ up to $\sim30\%$ in the centralized scenario.
Massive captured face images are stored in the database for the identification of individuals. However, these images can be observed intentionally or unintentionally by data managers, which is not at the will of individuals and may cause privacy violations. Existing protection schemes can maintain identifiability but slightly change the facial appearance, rendering it still susceptible to the visual perception of the original identity by data managers. In this paper, we propose an effective identity hider for human vision protection, which can significantly change appearance to visually hide identity while allowing identification for face recognizers. Concretely, the identity hider benefits from two specially designed modules: 1) The virtual face generation module generates a virtual face with a new appearance by manipulating the latent space of StyleGAN2. In particular, the virtual face has a similar parsing map to the original face, supporting other vision tasks such as head pose detection. 2) The appearance transfer module transfers the appearance of the virtual face into the original face via attribute replacement. Meanwhile, identity information can be preserved well with the help of the disentanglement networks. In addition, diversity and background preservation are supported to meet the various requirements. Extensive experiments demonstrate that the proposed identity hider achieves excellent performance on privacy protection and identifiability preservation.
Through the Bayesian lens of data assimilation, uncertainty on model parameters is traditionally quantified through the posterior covariance matrix. However, in modern settings involving high-dimensional and computationally expensive forward models, posterior covariance knowledge must be relaxed to deterministic or stochastic approximations. In the carbon flux inversion literature, Chevallier et al. proposed a stochastic method capable of approximating posterior variances of linear functionals of the model parameters that is particularly well-suited for large-scale Earth-system data assimilation tasks. This note formalizes this algorithm and clarifies its properties. We provide a formal statement of the algorithm, demonstrate why it converges to the desired posterior variance quantity of interest, and provide additional uncertainty quantification allowing incorporation of the Monte Carlo sampling uncertainty into the method's Bayesian credible intervals. The methodology is demonstrated using toy simulations and a realistic carbon flux inversion observing system simulation experiment.
We present new deterministic algorithms for computing distributed weighted minimum weight cycle (MWC) in undirected and directed graphs and distributed weighted all nodes shortest cycle (ANSC) in directed graphs. Our algorithms for these problems run in $\tilde{O}(n)$ rounds in the CONGEST model on graphs with arbitrary non-negative edge weights, matching the lower bound up to polylogarithmic factors. Before our work, no near linear rounds deterministic algorithms were known for these problems. The previous best bound for solving these problems deterministically requires an initial computation of all pairs shortest paths (APSP) on the given graph, followed by post-processing of $O(n)$ rounds, and in total takes $\tilde{O}(n^{4/3})$ rounds, using deterministic APSP~\cite{AR-SPAA20}. The main component of our new $\tilde{O}(n)$ rounds algorithms is a deterministic technique for constructing a sequence of successive blocker sets. These blocker sets are then treated as source nodes to compute $h$-hop shortest paths, which can then be used to compute candidate shortest cycles whose hop length lies in a particular range. The shortest cycles can then be obtained by selecting the cycle with the minimum weight from all these candidate cycles. Additionally using the above blocker set sequence technique, we also obtain $\tilde{O}(n)$ rounds deterministic algorithm for the multi-source shortest paths problem (MSSP) for both directed and undirected graphs, given that the size of the source set is at most $\sqrt{n}$. This new result for MSSP can be a step towards obtaining a $o(n^{4/3})$ rounds algorithm for deterministic APSP. We also believe that our new blocker set sequence technique may have potential applications for other distributed algorithms.
We propose an end-to-end learned image data hiding framework that embeds and extracts secrets in the latent representations of a generic neural compressor. By leveraging a perceptual loss function in conjunction with our proposed message encoder and decoder, our approach simultaneously achieves high image quality and high bit accuracy. Compared to existing techniques, our framework offers superior image secrecy and competitive watermarking robustness in the compressed domain while accelerating the embedding speed by over 50 times. These results demonstrate the potential of combining data hiding techniques and neural compression and offer new insights into developing neural compression techniques and their applications.
Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.
Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.