亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we explore a principal way to enhance the quality of object masks produced by different segmentation models. We propose a model-agnostic solution called SegRefiner, which offers a novel perspective on this problem by interpreting segmentation refinement as a data generation process. As a result, the refinement process can be smoothly implemented through a series of denoising diffusion steps. Specifically, SegRefiner takes coarse masks as inputs and refines them using a discrete diffusion process. By predicting the label and corresponding states-transition probabilities for each pixel, SegRefiner progressively refines the noisy masks in a conditional denoising manner. To assess the effectiveness of SegRefiner, we conduct comprehensive experiments on various segmentation tasks, including semantic segmentation, instance segmentation, and dichotomous image segmentation. The results demonstrate the superiority of our SegRefiner from multiple aspects. Firstly, it consistently improves both the segmentation metrics and boundary metrics across different types of coarse masks. Secondly, it outperforms previous model-agnostic refinement methods by a significant margin. Lastly, it exhibits a strong capability to capture extremely fine details when refining high-resolution images. The source code and trained models are available at //github.com/MengyuWang826/SegRefiner.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

Large language models are increasingly solving tasks that are commonly believed to require human-level reasoning ability. However, these models still perform very poorly on benchmarks of general intelligence such as the Abstraction and Reasoning Corpus (ARC). In this paper, we approach ARC as a programming-by-examples problem, and introduce a novel and scalable method for language model self-improvement called Code Iteration (CodeIt). Our method iterates between 1) program sampling and hindsight relabeling, and 2) learning from prioritized experience replay. By relabeling the goal of an episode (i.e., the target program output given input) to the realized output produced by the sampled program, our method effectively deals with the extreme sparsity of rewards in program synthesis. Applying CodeIt to the ARC dataset, we demonstrate that prioritized hindsight replay, along with pre-training and data-augmentation, leads to successful inter-task generalization. CodeIt is the first neuro-symbolic approach that scales to the full ARC evaluation dataset. Our method solves 15% of ARC evaluation tasks, achieving state-of-the-art performance and outperforming existing neural and symbolic baselines.

In this paper, we introduce a new flow-based method for global optimization of Lipschitz functions, called Stein Boltzmann Sampling (SBS). Our method samples from the Boltzmann distribution that becomes asymptotically uniform over the set of the minimizers of the function to be optimized. Candidate solutions are sampled via the \emph{Stein Variational Gradient Descent} algorithm. We prove the asymptotic convergence of our method, introduce two SBS variants, and provide a detailed comparison with several state-of-the-art global optimization algorithms on various benchmark functions. The design of our method, the theoretical results, and our experiments, suggest that SBS is particularly well-suited to be used as a continuation of efficient global optimization methods as it can produce better solutions while making a good use of the budget.

In this paper, we consider microgrids that interconnect prosumers with distributed energy resources and dynamic loads. Prosumers are connected through the microgrid to trade energy and gain profit while respecting the network constraints. We establish a local energy market by defining a competitive equilibrium which balances energy and satisfies voltage constraints within the microgrid for all time. Using duality theory, we prove that under some convexity assumptions, a competitive equilibrium is equivalent to a social welfare maximization solution. Additionally, we show that a competitive equilibrium is equivalent to a Nash equilibrium of a standard game. In general, the energy price for each prosumer is different, leading to the concept of locational prices. We investigate a case under which all prosumers have the same locational prices. Additionally, we show that under some assumptions on the resource supply and network topology, locational prices decay to zero after a period of time, implying the available supply will be more than the demand required to stabilize the system. Finally, two numerical examples are provided to validate the results, one of which is a direct application of our results on electric vehicle charging control.

In this work, product tables in invoices are obtained autonomously via a deep learning model, which is named as ExTTNet. Firstly, text is obtained from invoice images using Optical Character Recognition (OCR) techniques. Tesseract OCR engine [37] is used for this process. Afterwards, the number of existing features is increased by using feature extraction methods to increase the accuracy. Labeling process is done according to whether each text obtained as a result of OCR is a table element or not. In this study, a multilayer artificial neural network model is used. The training has been carried out with an Nvidia RTX 3090 graphics card and taken $162$ minutes. As a result of the training, the F1 score is $0.92$.

In this paper, we introduce a new class of parameterized controllers, drawing inspiration from Model Predictive Control (MPC). The controller resembles a Quadratic Programming (QP) solver of a linear MPC problem, with the parameters of the controller being trained via Deep Reinforcement Learning (DRL) rather than derived from system models. This approach addresses the limitations of common controllers with Multi-Layer Perceptron (MLP) or other general neural network architecture used in DRL, in terms of verifiability and performance guarantees, and the learned controllers possess verifiable properties like persistent feasibility and asymptotic stability akin to MPC. On the other hand, numerical examples illustrate that the proposed controller empirically matches MPC and MLP controllers in terms of control performance and has superior robustness against modeling uncertainty and noises. Furthermore, the proposed controller is significantly more computationally efficient compared to MPC and requires fewer parameters to learn than MLP controllers. Real-world experiments on vehicle drift maneuvering task demonstrate the potential of these controllers for robotics and other demanding control tasks.

Due to the growing complexity of modern Integrated Circuits (ICs), there is a need for automated circuit design methods. Recent years have seen rising research in hardware design language generation to facilitate the design process. In this work, we propose a Verilog generation framework, BetterV, which fine-tunes the large language models (LLMs) on processed domain-specific datasets and incorporates generative discriminators for guidance on particular design demands. The Verilog modules are collected, filtered and processed from internet to form a clean and abundant dataset. Instruct-tuning methods are specially designed to fine-tuned the LLMs to understand the knowledge about Verilog. Furthermore, data are augmented to enrich the training set and also used to train a generative discriminator on particular downstream task, which leads a guidance for the LLMs to optimize the Verilog implementation. BetterV has the ability to generate syntactically and functionally correct Verilog, which can outperform GPT-4 on the VerilogEval-machine benchmark. With the help of task-specific generative discriminator, BetterV can achieve remarkable improvement on various electronic design automation (EDA) downstream tasks, including the netlist node reduction for synthesis and verification runtime reduction with Boolean Satisfiability (SAT) solving.

Link prediction is a very fundamental task on graphs. Inspired by traditional path-based methods, in this paper we propose a general and flexible representation learning framework based on paths for link prediction. Specifically, we define the representation of a pair of nodes as the generalized sum of all path representations, with each path representation as the generalized product of the edge representations in the path. Motivated by the Bellman-Ford algorithm for solving the shortest path problem, we show that the proposed path formulation can be efficiently solved by the generalized Bellman-Ford algorithm. To further improve the capacity of the path formulation, we propose the Neural Bellman-Ford Network (NBFNet), a general graph neural network framework that solves the path formulation with learned operators in the generalized Bellman-Ford algorithm. The NBFNet parameterizes the generalized Bellman-Ford algorithm with 3 neural components, namely INDICATOR, MESSAGE and AGGREGATE functions, which corresponds to the boundary condition, multiplication operator, and summation operator respectively. The NBFNet is very general, covers many traditional path-based methods, and can be applied to both homogeneous graphs and multi-relational graphs (e.g., knowledge graphs) in both transductive and inductive settings. Experiments on both homogeneous graphs and knowledge graphs show that the proposed NBFNet outperforms existing methods by a large margin in both transductive and inductive settings, achieving new state-of-the-art results.

In this paper, we introduce a two-level attention schema, Poolingformer, for long document modeling. Its first level uses a smaller sliding window pattern to aggregate information from neighbors. Its second level employs a larger window to increase receptive fields with pooling attention to reduce both computational cost and memory consumption. We first evaluate Poolingformer on two long sequence QA tasks: the monolingual NQ and the multilingual TyDi QA. Experimental results show that Poolingformer sits atop three official leaderboards measured by F1, outperforming previous state-of-the-art models by 1.9 points (79.8 vs. 77.9) on NQ long answer, 1.9 points (79.5 vs. 77.6) on TyDi QA passage answer, and 1.6 points (67.6 vs. 66.0) on TyDi QA minimal answer. We further evaluate Poolingformer on a long sequence summarization task. Experimental results on the arXiv benchmark continue to demonstrate its superior performance.

In this paper, we present a comprehensive review of the imbalance problems in object detection. To analyze the problems in a systematic manner, we introduce a problem-based taxonomy. Following this taxonomy, we discuss each problem in depth and present a unifying yet critical perspective on the solutions in the literature. In addition, we identify major open issues regarding the existing imbalance problems as well as imbalance problems that have not been discussed before. Moreover, in order to keep our review up to date, we provide an accompanying webpage which catalogs papers addressing imbalance problems, according to our problem-based taxonomy. Researchers can track newer studies on this webpage available at: //github.com/kemaloksuz/ObjectDetectionImbalance .

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司