亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A novel hack involving Large Language Models (LLMs) has emerged, leveraging adversarial suffixes to trick models into generating perilous responses. This method has garnered considerable attention from reputable media outlets such as the New York Times and Wired, thereby influencing public perception regarding the security and safety of LLMs. In this study, we advocate the utilization of perplexity as one of the means to recognize such potential attacks. The underlying concept behind these hacks revolves around appending an unusually constructed string of text to a harmful query that would otherwise be blocked. This maneuver confuses the protective mechanisms and tricks the model into generating a forbidden response. Such scenarios could result in providing detailed instructions to a malicious user for constructing explosives or orchestrating a bank heist. Our investigation demonstrates the feasibility of employing perplexity, a prevalent natural language processing metric, to detect these adversarial tactics before generating a forbidden response. By evaluating the perplexity of queries with and without such adversarial suffixes using an open-source LLM, we discovered that nearly 90 percent were above a perplexity of 1000. This contrast underscores the efficacy of perplexity for detecting this type of exploit.

相關內容

Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI. While this generative AI approach has produced impressive results, it heavily leans on human supervision. Even state-of-the-art AI models like ChatGPT depend on fine-tuning through human demonstrations, demanding extensive human input and domain expertise. This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation. To address this limitation, we propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data. Drawing inspiration from unsupervised reinforcement learning (RL) pretraining, EAI achieves exploration within the natural language space. We accomplish this by harnessing large language models to assess the novelty of generated content. Our approach employs two key components: an actor that generates novel content following exploration principles and a critic that evaluates the generated content, offering critiques to guide the actor. Empirical evaluations demonstrate that EAI significantly boosts model performance on complex reasoning tasks, addressing the limitations of human-intensive supervision.

Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs. DMs work by constructing a Stochastic Differential Equation (SDE) in the input space (ie, position space), and using a neural network to reverse it. In this work, we introduce a novel generative modeling framework grounded in \textbf{phase space dynamics}, where a phase space is defined as {an augmented space encompassing both position and velocity.} Leveraging insights from Stochastic Optimal Control, we construct a path measure in the phase space that enables efficient sampling. {In contrast to DMs, our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.} This early prediction sets the stage for efficient data generation by leveraging additional velocity information along the trajectory. On standard image generation benchmarks, our model yields favorable performance over baselines in the regime of small Number of Function Evaluations (NFEs). Furthermore, our approach rivals the performance of diffusion models equipped with efficient sampling techniques, underscoring its potential as a new tool generative modeling.

Production Machine Learning involves hosting multiple versions of models over time, often with many model versions running at once. When model performance does not meet expectations, Machine Learning Engineers (MLEs) debug issues by exploring and analyzing numerous prior versions of code and training data to identify root causes and mitigate problems. Traditional debugging and logging tools often fall short in managing this experimental, multi-version context. To address the challenges in this domain, novel approaches are required for logging and log data management. FlorDB introduces Multiversion Hindsight Logging, which allows engineers to use the most recent version's logging statements to explore past versions, even when older versions logged different data. Log statement propagation enables consistent injection of logging statements into past code versions, regardless of changes to the codebase. Once log statements are propagated across code versions, the remaining challenges in Multiversion Hindsight Logging relate to efficiently replaying the new log statements based on checkpoints from previous runs. Finally, a coherent user experience is required to help MLEs debug across all versions of code and data. To this end, FlorDB presents a unified relational model for efficient handling of historical queries, offering a comprehensive view of the log history to simplify the exploration of past code iterations. In sum, FlorDB provides a robust tool tailored to the specific needs of MLEs, significantly enhancing their ability to navigate the intricate landscape of ML experimentation.

Score-based Generative Models (SGMs) have demonstrated exceptional synthesis outcomes across various tasks. However, the current design landscape of the forward diffusion process remains largely untapped and often relies on physical heuristics or simplifying assumptions. Utilizing insights from the development of scalable Bayesian posterior samplers, we present a complete recipe for formulating forward processes in SGMs, ensuring convergence to the desired target distribution. Our approach reveals that several existing SGMs can be seen as specific manifestations of our framework. Building upon this method, we introduce Phase Space Langevin Diffusion (PSLD), which relies on score-based modeling within an augmented space enriched by auxiliary variables akin to physical phase space. Empirical results exhibit the superior sample quality and improved speed-quality trade-off of PSLD compared to various competing approaches on established image synthesis benchmarks. Remarkably, PSLD achieves sample quality akin to state-of-the-art SGMs (FID: 2.10 for unconditional CIFAR-10 generation). Lastly, we demonstrate the applicability of PSLD in conditional synthesis using pre-trained score networks, offering an appealing alternative as an SGM backbone for future advancements. Code and model checkpoints can be accessed at \url{//github.com/mandt-lab/PSLD}.

Exploring variations of 3D shapes is a time-consuming process in traditional 3D modeling tools. Deep generative models of 3D shapes often feature continuous latent spaces that can, in principle, be used to explore potential variations starting from a set of input shapes. In practice, doing so can be problematic: latent spaces are high dimensional and hard to visualize, contain shapes that are not relevant to the input shapes, and linear paths through them often lead to sub-optimal shape transitions. Furthermore, one would ideally be able to explore variations in the original high-quality meshes used to train the generative model, not its lower-quality output geometry. In this paper, we present a method to explore variations among a given set of landmark shapes by constructing a mapping from an easily-navigable 2D exploration space to a subspace of a pre-trained generative model. We first describe how to find a mapping that spans the set of input landmark shapes and exhibits smooth variations between them. We then show how to turn the variations in this subspace into deformation fields, to transfer those variations to high-quality meshes for the landmark shapes. Our results show that our method can produce visually-pleasing and easily-navigable 2D exploration spaces for several different shape categories, especially as compared to prior work on learning deformation spaces for 3D shapes.

Federated Learning (FL) is a well-known paradigm of distributed machine learning on mobile and IoT devices, which preserves data privacy and optimizes communication efficiency. To avoid the single point of failure problem in FL, decentralized federated learning (DFL) has been proposed to use peer-to-peer communication for model aggregation, which has been considered an attractive solution for machine learning tasks on distributed personal devices. However, this process is vulnerable to attackers who share false models and data. If there exists a group of malicious clients, they might harm the performance of the model by carrying out a poisoning attack. In addition, in DFL, clients often lack the incentives to contribute their computing powers to do model training. In this paper, we proposed Blockchain-based Decentralized Federated Learning (BDFL), which leverages a blockchain for decentralized model verification and auditing. BDFL includes an auditor committee for model verification, an incentive mechanism to encourage the participation of clients, a reputation model to evaluate the trustworthiness of clients, and a protocol suite for dynamic network updates. Evaluation results show that, with the reputation mechanism, BDFL achieves fast model convergence and high accuracy on real datasets even if there exist 30\% malicious clients in the system.

Graph Neural Networks (GNNs) have proven to be useful for many different practical applications. However, many existing GNN models have implicitly assumed homophily among the nodes connected in the graph, and therefore have largely overlooked the important setting of heterophily, where most connected nodes are from different classes. In this work, we propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily. The proposed framework incorporates an interpretable compatibility matrix for modeling the heterophily or homophily level in the graph, which can be learned in an end-to-end fashion, enabling it to go beyond the assumption of strong homophily. Theoretically, we show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN. Our extensive experiments demonstrate the effectiveness of our approach in more realistic and challenging experimental settings with significantly less training data compared to previous works: CPGNN variants achieve state-of-the-art results in heterophily settings with or without contextual node features, while maintaining comparable performance in homophily settings.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

Embedding models for deterministic Knowledge Graphs (KG) have been extensively studied, with the purpose of capturing latent semantic relations between entities and incorporating the structured knowledge into machine learning. However, there are many KGs that model uncertain knowledge, which typically model the inherent uncertainty of relations facts with a confidence score, and embedding such uncertain knowledge represents an unresolved challenge. The capturing of uncertain knowledge will benefit many knowledge-driven applications such as question answering and semantic search by providing more natural characterization of the knowledge. In this paper, we propose a novel uncertain KG embedding model UKGE, which aims to preserve both structural and uncertainty information of relation facts in the embedding space. Unlike previous models that characterize relation facts with binary classification techniques, UKGE learns embeddings according to the confidence scores of uncertain relation facts. To further enhance the precision of UKGE, we also introduce probabilistic soft logic to infer confidence scores for unseen relation facts during training. We propose and evaluate two variants of UKGE based on different learning objectives. Experiments are conducted on three real-world uncertain KGs via three tasks, i.e. confidence prediction, relation fact ranking, and relation fact classification. UKGE shows effectiveness in capturing uncertain knowledge by achieving promising results on these tasks, and consistently outperforms baselines on these tasks.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司