This paper presents FastFit, a novel neural vocoder architecture that replaces the U-Net encoder with multiple short-time Fourier transforms (STFTs) to achieve faster generation rates without sacrificing sample quality. We replaced each encoder block with an STFT, with parameters equal to the temporal resolution of each decoder block, leading to the skip connection. FastFit reduces the number of parameters and the generation time of the model by almost half while maintaining high fidelity. Through objective and subjective evaluations, we demonstrated that the proposed model achieves nearly twice the generation speed of baseline iteration-based vocoders while maintaining high sound quality. We further showed that FastFit produces sound qualities similar to those of other baselines in text-to-speech evaluation scenarios, including multi-speaker and zero-shot text-to-speech.
In our work, we build upon the established connection between Residual Neural Networks (ResNets) and continuous-time control systems known as NeurODEs. By construction, NeurODEs have been limited to constant-width layers, making them unsuitable for modeling deep learning architectures with width-varying layers. In this paper, we propose a continuous-time Autoencoder, which we call AutoencODE, and we extend to this case the mean-field control framework already developed for usual NeurODEs. In this setting, we tackle the case of low Tikhonov regularization, resulting in potentially non-convex cost landscapes. While the global results obtained for high Tikhonov regularization may not hold globally, we show that many of them can be recovered in regions where the loss function is locally convex. Inspired by our theoretical findings, we develop a training method tailored to this specific type of Autoencoders with residual connections, and we validate our approach through numerical experiments conducted on various examples.
We present an end-to-end procedure for embodied exploration based on two biologically inspired computations: predictive coding and uncertainty minimization. The procedure can be applied to any exploration setting in a task-independent and intrinsically driven manner. We first demonstrate our approach in a maze navigation task and show that our model is capable of discovering the underlying transition distribution and reconstructing the spatial features of the environment. Second, we apply our model to the more complex task of active vision, where an agent must actively sample its visual environment to gather information. We show that our model is able to build unsupervised representations that allow it to actively sample and efficiently categorize sensory scenes. We further show that using these representations as input for downstream classification leads to superior data efficiency and learning speed compared to other baselines, while also maintaining lower parameter complexity. Finally, the modularity of our model allows us to analyze its internal mechanisms and to draw insight into the interactions between perception and action during exploratory behavior.
In this paper, we present EdgeFace, a lightweight and efficient face recognition network inspired by the hybrid architecture of EdgeNeXt. By effectively combining the strengths of both CNN and Transformer models, and a low rank linear layer, EdgeFace achieves excellent face recognition performance optimized for edge devices. The proposed EdgeFace network not only maintains low computational costs and compact storage, but also achieves high face recognition accuracy, making it suitable for deployment on edge devices. Extensive experiments on challenging benchmark face datasets demonstrate the effectiveness and efficiency of EdgeFace in comparison to state-of-the-art lightweight models and deep face recognition models. Our EdgeFace model with 1.77M parameters achieves state of the art results on LFW (99.73%), IJB-B (92.67%), and IJB-C (94.85%), outperforming other efficient models with larger computational complexities. The code to replicate the experiments will be made available publicly.
Voltage Overscaling (VOS) is one of the well-known techniques to increase the energy efficiency of arithmetic units. Also, it can provide significant lifetime improvements, while still meeting the accuracy requirements of inherently error-resilient applications. This paper proposes a generic accuracy-configurable multiplier that employs the VOS at a coarse-grained level (block-level) to reduce the control logic required for applying VOS and its associated overheads, thus enabling a high degree of trade-off between energy consumption and output quality. The proposed configurable Block-Level VOS-based (BL-VOS) multiplier relies on employing VOS in a multiplier composed of smaller blocks, where applying VOS in different blocks results in structures with various output accuracy levels. To evaluate the proposed concept, we implement 8-bit and 16-bit BL-VOS multipliers with various blocks width in a 15-nm FinFET technology. The results show that the proposed multiplier achieves up to 15% lower energy consumption and up to 21% higher output accuracy compared to the state-of-the-art VOS-based multipliers. Also, the effects of Process Variation (PV) and Bias Temperature Instability (BTI) induced delay on the proposed multiplier are investigated. Finally, the effectiveness of the proposed multiplier is studied for two different image processing applications, in terms of quality and energy efficiency.
Convolutional neural networks (CNNs) and Transformer-based models are being widely applied in medical image segmentation thanks to their ability to extract high-level features and capture important aspects of the image. However, there is often a trade-off between the need for high accuracy and the desire for low computational cost. A model with higher parameters can theoretically achieve better performance but also result in more computational complexity and higher memory usage, and thus is not practical to implement. In this paper, we look for a lightweight U-Net-based model which can remain the same or even achieve better performance, namely U-Lite. We design U-Lite based on the principle of Depthwise Separable Convolution so that the model can both leverage the strength of CNNs and reduce a remarkable number of computing parameters. Specifically, we propose Axial Depthwise Convolutions with kernels 7x7 in both the encoder and decoder to enlarge the model receptive field. To further improve the performance, we use several Axial Dilated Depthwise Convolutions with filters 3x3 for the bottleneck as one of our branches. Overall, U-Lite contains only 878K parameters, 35 times less than the traditional U-Net, and much more times less than other modern Transformer-based models. The proposed model cuts down a large amount of computational complexity while attaining an impressive performance on medical segmentation tasks compared to other state-of-the-art architectures. The code will be available at: //github.com/duong-db/U-Lite.
Car detection, particularly through camera vision, has become a major focus in the field of computer vision and has gained widespread adoption. While current car detection systems are capable of good detection, reliable detection can still be challenging due to factors such as proximity between the car, light intensity, and environmental visibility. To address these issues, we propose cross-domain Car Detection Model with integrated convolutional block Attention mechanism(CDMA) that we apply to car recognition for autonomous driving and other areas. CDMA includes several novelties: 1)Building a complete cross-domain target detection framework. 2)Developing an unpaired target domain picture generation module with an integrated convolutional attention mechanism which specifically emphasizes the car headlights feature. 3)Adopting Generalized Intersection over Union (GIOU) as the loss function of the target detection framework. 4)Designing an object detection model integrated with two-headed Convolutional Block Attention Module(CBAM). 5)Utilizing an effective data enhancement method. To evaluate the model's effectiveness, we performed a reduced will resolution process on the data in the SSLAD dataset and used it as the benchmark dataset for our task. Experimental results show that the performance of the cross-domain car target detection model improves by 40% over the model without our framework, and our improvements have a significant impact on cross-domain car recognition.
Hierarchical structures are popular in recent vision transformers, however, they require sophisticated designs and massive datasets to work well. In this paper, we explore the idea of nesting basic local transformers on non-overlapping image blocks and aggregating them in a hierarchical way. We find that the block aggregation function plays a critical role in enabling cross-block non-local information communication. This observation leads us to design a simplified architecture that requires minor code changes upon the original vision transformer. The benefits of the proposed judiciously-selected design are threefold: (1) NesT converges faster and requires much less training data to achieve good generalization on both ImageNet and small datasets like CIFAR; (2) when extending our key ideas to image generation, NesT leads to a strong decoder that is 8$\times$ faster than previous transformer-based generators; and (3) we show that decoupling the feature learning and abstraction processes via this nested hierarchy in our design enables constructing a novel method (named GradCAT) for visually interpreting the learned model. Source code is available //github.com/google-research/nested-transformer.
Deep neural network architectures have traditionally been designed and explored with human expertise in a long-lasting trial-and-error process. This process requires huge amount of time, expertise, and resources. To address this tedious problem, we propose a novel algorithm to optimally find hyperparameters of a deep network architecture automatically. We specifically focus on designing neural architectures for medical image segmentation task. Our proposed method is based on a policy gradient reinforcement learning for which the reward function is assigned a segmentation evaluation utility (i.e., dice index). We show the efficacy of the proposed method with its low computational cost in comparison with the state-of-the-art medical image segmentation networks. We also present a new architecture design, a densely connected encoder-decoder CNN, as a strong baseline architecture to apply the proposed hyperparameter search algorithm. We apply the proposed algorithm to each layer of the baseline architectures. As an application, we train the proposed system on cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017. Starting from a baseline segmentation architecture, the resulting network architecture obtains the state-of-the-art results in accuracy without performing any trial-and-error based architecture design approaches or close supervision of the hyperparameters changes.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.
Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.