The public release of ChatGPT has resulted in considerable publicity and has led to wide-spread discussion of the usefulness and capabilities of generative AI language models. Its ability to extract and summarise data from textual sources and present them as human-like contextual responses makes it an eminently suitable tool to answer questions users might ask. This paper tested what archaeological literature appears to have been included in ChatGPT's training phase. While ChatGPT offered seemingly pertinent references, a large percentage proved to be fictitious. Using cloze analysis to make inferences on the sources 'memorised' by a generative AI model, this paper was unable to prove that ChatGPT had access to the full texts of the genuine references. It can be shown that all references provided by ChatGPT that were found to be genuine have also been cited on Wikipedia pages. This strongly indicates that the source base for at least some of the data is found in those pages. The implications of this in relation to data quality are discussed.
Temporal analysis of products (TAP) reactors enable experiments that probe numerous kinetic processes within a single set of experimental data through variations in pulse intensity, delay, or temperature. Selecting additional TAP experiments often involves arbitrary selection of reaction conditions or the use of chemical intuition. To make experiment selection in TAP more robust, we explore the efficacy of model-based design of experiments (MBDoE) for precision in TAP reactor kinetic modeling. We successfully applied this approach to a case study of synthetic oxidative propane dehydrogenation (OPDH) that involves pulses of propane and oxygen. We found that experiments identified as optimal through the MBDoE for precision generally reduce parameter uncertainties to a higher degree than alternative experiments. The performance of MBDoE for model divergence was also explored for OPDH, with the relevant active sites (catalyst structure) being unknown. An experiment that maximized the divergence between the three proposed mechanisms was identified and led to clear mechanism discrimination. However, re-optimization of kinetic parameters eliminated the ability to discriminate. The findings yield insight into the prospects and limitations of MBDoE for TAP and transient kinetic experiments.
Contemporary practices such as InnerSource and DevOps promote software reuse. This study investigates the implications of using contemporary practices on software reuse. In particular, we investigate the costs, benefits, challenges, and potential improvements in contemporary reuse at Ericsson. We performed the study in two phases: a) the initial data collection based on a combination of data collection methods (e.g., interviews, discussions, company portals), and b) a follow-up group discussion after a year to understand the status of the challenges and improvements identified in the first phase. Our results indicate that developing reusable assets resulted in upfront costs, such as additional effort in ensuring compliance. Furthermore, development with reuse also resulted in additional effort, for example, in integrating and understanding reusable assets. Ericsson perceived the additional effort as an investment resulting in long-term benefits such as improved quality, productivity, customer experience, and way of working. Ericsson's main challenge was increased pressure on the producers of reusable assets, which was mitigated by scaling the InnerSource adoption. InnerSource success is evident from the increase in the contributions to reusable assets. In addition, Ericsson implemented measures such as automating the compliance check, which enhanced the maturity of reusable assets and resulted in increased reuse.
Teams that have trained large Transformer-based models have reported training instabilities at large scale that did not appear when training with the same hyperparameters at smaller scales. Although the causes of such instabilities are of scientific interest, the amount of resources required to reproduce them has made investigation difficult. In this work, we seek ways to reproduce and study training stability and instability at smaller scales. First, we focus on two sources of training instability described in previous work: the growth of logits in attention layers (Dehghani et al., 2023) and divergence of the output logits from the log probabilities (Chowdhery et al., 2022). By measuring the relationship between learning rate and loss across scales, we show that these instabilities also appear in small models when training at high learning rates, and that mitigations previously employed at large scales are equally effective in this regime. This prompts us to investigate the extent to which other known optimizer and model interventions influence the sensitivity of the final loss to changes in the learning rate. To this end, we study methods such as warm-up, weight decay, and the $\mu$Param (Yang et al., 2022), and combine techniques to train small models that achieve similar losses across orders of magnitude of learning rate variation. Finally, to conclude our exploration we study two cases where instabilities can be predicted before they emerge by examining the scaling behavior of model activation and gradient norms.
Reinforcement learning (RL) algorithms face the challenge of limited data efficiency, particularly when dealing with high-dimensional state spaces and large-scale problems. Most RL methods often rely solely on state transition information within the same episode when updating the agent's Critic, which can lead to low data efficiency and sub-optimal training time consumption. Inspired by human-like analogical reasoning abilities, we introduce a novel mesh information propagation mechanism, termed the 'Imagination Mechanism (IM)', designed to significantly enhance the data efficiency of RL algorithms. Specifically, IM enables information generated by a single sample to be effectively broadcasted to different states, instead of simply transmitting in the same episode and it allows the model to better understand the interdependencies between states and learn scarce sample information more efficiently. To promote versatility, we extend the imagination mechanism to function as a plug-and-play module that can be seamlessly and fluidly integrated into other widely adopted RL models. Our experiments demonstrate that Imagination mechanism consistently boosts four mainstream SOTA RL-algorithms, such as SAC, PPO, DDPG, and DQN, by a considerable margin, ultimately leading to superior performance than before across various tasks. For access to our code and data, please visit //github.com/Zero-coder/FECAM.
Clustering of publication networks is an efficient way to obtain classifications of large collections of research publications. Such classifications can be used to, e.g., detect research topics, normalize citation relations, or explore the publication output of a unit. Citation networks can be created using a variety of approaches. Best practices to obtain classifications using clustering have been investigated, in particular the performance of different publication-publication relatedness measures. However, evaluation of different approaches to normalization of citation relations have not been explored to the same extent. In this paper, we evaluate five approaches to normalization of direct citation relations with respect to clustering solution quality in four data sets. A sixth approach is evaluated using no normalization. To assess the quality of clustering solutions, we use three measures. (1) We compare the clustering solution to the reference lists of a set of publications using the Adjusted Rand Index. (2) Using the Sihouette width measure, we quantity to which extent the publications have relations to other clusters than the one they have been assigned to. (3) We propose a measure that captures publications that have probably been inaccurately assigned. The results clearly show that normalization is preferred over unnormalized direct citation relations. Furthermore, the results indicate that the fractional normalization approach, which can be considered the standard approach, causes inaccurate assignments. The geometric normalization approach has a similar performance as the fractional approach regarding Adjusted Rand Index and Silhouette width but leads to fewer inaccurate assignments. We therefore believe that the geometric approach may be preferred over the fractional approach.
We describe a software package, TomOpt, developed to optimise the geometrical layout and specifications of detectors designed for tomography by scattering of cosmic-ray muons. The software exploits differentiable programming for the modeling of muon interactions with detectors and scanned volumes, the inference of volume properties, and the optimisation cycle performing the loss minimisation. In doing so, we provide the first demonstration of end-to-end-differentiable and inference-aware optimisation of particle physics instruments. We study the performance of the software on a relevant benchmark scenarios and discuss its potential applications.
The main question this paper addresses is: What combination of a robot controller and a learning method should be used, if the morphology of the learning robot is not known in advance? Our interest is rooted in the context of morphologically evolving modular robots, but the question is also relevant in general, for system designers interested in widely applicable solutions. We perform an experimental comparison of three controller-and-learner combinations: one approach where controllers are based on modelling animal locomotion (Central Pattern Generators, CPG) and the learner is an evolutionary algorithm, a completely different method using Reinforcement Learning (RL) with a neural network controller architecture, and a combination `in-between' where controllers are neural networks and the learner is an evolutionary algorithm. We apply these three combinations to a test suite of modular robots and compare their efficacy, efficiency, and robustness. Surprisingly, the usual CPG-based and RL-based options are outperformed by the in-between combination that is more robust and efficient than the other two setups.
Sequential, multiple assignment randomized trials (SMARTs), which assist in the optimization of adaptive interventions, are growing in popularity in education and behavioral sciences. This is unsurprising, as adaptive interventions reflect the sequential, tailored nature of learning in a classroom or school. Nonetheless, as is true elsewhere in education research, observed effect sizes in education-based SMARTs are frequently small. As a consequence, statistical efficiency is of paramount importance in their analysis. The contributions of this manuscript are two-fold. First, we provide an overview of adaptive interventions and SMART designs for researchers in education science. Second, we propose four techniques that have the potential to improve statistical efficiency in the analysis of SMARTs. We demonstrate the benefits of these techniques in SMART settings both through the analysis of a SMART designed to optimize an adaptive intervention for increasing cognitive behavioral therapy delivery in school settings and through a comprehensive simulation study. Each of the proposed techniques is easily implementable, either with over-the-counter statistical software or through R code provided in an online supplement.
Surface defect inspection is of great importance for industrial manufacture and production. Though defect inspection methods based on deep learning have made significant progress, there are still some challenges for these methods, such as indistinguishable weak defects and defect-like interference in the background. To address these issues, we propose a transformer network with multi-stage CNN (Convolutional Neural Network) feature injection for surface defect segmentation, which is a UNet-like structure named CINFormer. CINFormer presents a simple yet effective feature integration mechanism that injects the multi-level CNN features of the input image into different stages of the transformer network in the encoder. This can maintain the merit of CNN capturing detailed features and that of transformer depressing noises in the background, which facilitates accurate defect detection. In addition, CINFormer presents a Top-K self-attention module to focus on tokens with more important information about the defects, so as to further reduce the impact of the redundant background. Extensive experiments conducted on the surface defect datasets DAGM 2007, Magnetic tile, and NEU show that the proposed CINFormer achieves state-of-the-art performance in defect detection.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.