亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Image animation aims to bring static images to life according to driving videos and create engaging visual content that can be used for various purposes such as animation, entertainment, and education. Recent unsupervised methods utilize affine and thin-plate spline transformations based on keypoints to transfer the motion in driving frames to the source image. However, limited by the expressive power of the transformations used, these methods always produce poor results when the gap between the motion in the driving frame and the source image is large. To address this issue, we propose to model motion from the source image to the driving frame in highly-expressive diffeomorphism spaces. Firstly, we introduce Continuous Piecewise-Affine based (CPAB) transformation to model the motion and present a well-designed inference algorithm to generate CPAB transformation from control keypoints. Secondly, we propose a SAM-guided keypoint semantic loss to further constrain the keypoint extraction process and improve the semantic consistency between the corresponding keypoints on the source and driving images. Finally, we design a structure alignment loss to align the structure-related features extracted from driving and generated images, thus helping the generator generate results that are more consistent with the driving action. Extensive experiments on four datasets demonstrate the effectiveness of our method against state-of-the-art competitors quantitatively and qualitatively. Code will be publicly available at: //github.com/DevilPG/AAAI2024-CPABMM.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Message hiding, a technique that conceals secret message bits within a cover image, aims to achieve an optimal balance among message capacity, recovery accuracy, and imperceptibility. While convolutional neural networks have notably improved message capacity and imperceptibility, achieving high recovery accuracy remains challenging. This challenge arises because convolutional operations struggle to preserve the sequential order of message bits and effectively address the discrepancy between these two modalities. To address this, we propose StegaFormer, an innovative MLP-based framework designed to preserve bit order and enable global fusion between modalities. Specifically, StegaFormer incorporates three crucial components: Order-Preserving Message Encoder (OPME), Decoder (OPMD) and Global Message-Image Fusion (GMIF). OPME and OPMD aim to preserve the order of message bits by segmenting the entire sequence into equal-length segments and incorporating sequential information during encoding and decoding. Meanwhile, GMIF employs a cross-modality fusion mechanism to effectively fuse the features from the two uncorrelated modalities. Experimental results on the COCO and DIV2K datasets demonstrate that StegaFormer surpasses existing state-of-the-art methods in terms of recovery accuracy, message capacity, and imperceptibility. We will make our code publicly available.

We present VIXEN - a technique that succinctly summarizes in text the visual differences between a pair of images in order to highlight any content manipulation present. Our proposed network linearly maps image features in a pairwise manner, constructing a soft prompt for a pretrained large language model. We address the challenge of low volume of training data and lack of manipulation variety in existing image difference captioning (IDC) datasets by training on synthetically manipulated images from the recent InstructPix2Pix dataset generated via prompt-to-prompt editing framework. We augment this dataset with change summaries produced via GPT-3. We show that VIXEN produces state-of-the-art, comprehensible difference captions for diverse image contents and edit types, offering a potential mitigation against misinformation disseminated via manipulated image content. Code and data are available at //github.com/alexblck/vixen

Recent advances in vision-language models (VLMs) have led to improved performance on tasks such as visual question answering and image captioning. Consequently, these models are now well-positioned to reason about the physical world, particularly within domains such as robotic manipulation. However, current VLMs are limited in their understanding of the physical concepts (e.g., material, fragility) of common objects, which restricts their usefulness for robotic manipulation tasks that involve interaction and physical reasoning about such objects. To address this limitation, we propose PhysObjects, an object-centric dataset of 39.6K crowd-sourced and 417K automated physical concept annotations of common household objects. We demonstrate that fine-tuning a VLM on PhysObjects improves its understanding of physical object concepts, including generalization to held-out concepts, by capturing human priors of these concepts from visual appearance. We incorporate this physically grounded VLM in an interactive framework with a large language model-based robotic planner, and show improved planning performance on tasks that require reasoning about physical object concepts, compared to baselines that do not leverage physically grounded VLMs. We additionally illustrate the benefits of our physically grounded VLM on a real robot, where it improves task success rates. We release our dataset and provide further details and visualizations of our results at //iliad.stanford.edu/pg-vlm/.

Exposure correction aims to enhance images suffering from improper exposure to achieve satisfactory visual effects. Despite recent progress, existing methods generally mitigate either overexposure or underexposure in input images, and they still struggle to handle images with mixed exposure, i.e., one image incorporates both overexposed and underexposed regions. The mixed exposure distribution is non-uniform and leads to varying representation, which makes it challenging to address in a unified process. In this paper, we introduce an effective Region-aware Exposure Correction Network (RECNet) that can handle mixed exposure by adaptively learning and bridging different regional exposure representations. Specifically, to address the challenge posed by mixed exposure disparities, we develop a region-aware de-exposure module that effectively translates regional features of mixed exposure scenarios into an exposure-invariant feature space. Simultaneously, as de-exposure operation inevitably reduces discriminative information, we introduce a mixed-scale restoration unit that integrates exposure-invariant features and unprocessed features to recover local information. To further achieve a uniform exposure distribution in the global image, we propose an exposure contrastive regularization strategy under the constraints of intra-regional exposure consistency and inter-regional exposure continuity. Extensive experiments are conducted on various datasets, and the experimental results demonstrate the superiority and generalization of our proposed method. The code is released at: //github.com/kravrolens/RECNet.

This paper aims to address a common challenge in deep learning-based image transformation methods, such as image enhancement and super-resolution, which heavily rely on precisely aligned paired datasets with pixel-level alignments. However, creating precisely aligned paired images presents significant challenges and hinders the advancement of methods trained on such data. To overcome this challenge, this paper introduces a novel and simple Frequency Distribution Loss (FDL) for computing distribution distance within the frequency domain. Specifically, we transform image features into the frequency domain using Discrete Fourier Transformation (DFT). Subsequently, frequency components (amplitude and phase) are processed separately to form the FDL loss function. Our method is empirically proven effective as a training constraint due to the thoughtful utilization of global information in the frequency domain. Extensive experimental evaluations, focusing on image enhancement and super-resolution tasks, demonstrate that FDL outperforms existing misalignment-robust loss functions. Furthermore, we explore the potential of our FDL for image style transfer that relies solely on completely misaligned data. Our code is available at: //github.com/eezkni/FDL

We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast

We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.

Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field.

Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains a challenge. Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a data-efficient Graph Convolutional Network (GCN) algorithm PinSage, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model. We also develop an efficient MapReduce model inference algorithm to generate embeddings using a trained model. We deploy PinSage at Pinterest and train it on 7.5 billion examples on a graph with 3 billion nodes representing pins and boards, and 18 billion edges. According to offline metrics, user studies and A/B tests, PinSage generates higher-quality recommendations than comparable deep learning and graph-based alternatives. To our knowledge, this is the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.

Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevents direct influence of the language description to the event proposal, which is important for generating accurate descriptions. To address this problem, we propose an end-to-end transformer model for dense video captioning. The encoder encodes the video into appropriate representations. The proposal decoder decodes from the encoding with different anchors to form video event proposals. The captioning decoder employs a masking network to restrict its attention to the proposal event over the encoding feature. This masking network converts the event proposal to a differentiable mask, which ensures the consistency between the proposal and captioning during training. In addition, our model employs a self-attention mechanism, which enables the use of efficient non-recurrent structure during encoding and leads to performance improvements. We demonstrate the effectiveness of this end-to-end model on ActivityNet Captions and YouCookII datasets, where we achieved 10.12 and 6.58 METEOR score, respectively.

北京阿比特科技有限公司