亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With humans interacting with AI-based systems at an increasing rate, it is necessary to ensure the artificial systems are acting in a manner which reflects understanding of the human. In the case of humans and artificial AI agents operating in the same environment, we note the significance of comprehension and response to the actions or capabilities of a human from an agent's perspective, as well as the possibility to delegate decisions either to humans or to agents, depending on who is deemed more suitable at a certain point in time. Such capabilities will ensure an improved responsiveness and utility of the entire human-AI system. To that end, we investigate the use of cognitively inspired models of behavior to predict the behavior of both human and AI agents. The predicted behavior, and associated performance with respect to a certain goal, is used to delegate control between humans and AI agents through the use of an intermediary entity. As we demonstrate, this allows overcoming potential shortcomings of either humans or agents in the pursuit of a goal.

相關內容

Deep neural networks for scene perception in automated vehicles achieve excellent results for the domains they were trained on. However, in real-world conditions, the domain of operation and its underlying data distribution are subject to change. Adverse weather conditions, in particular, can significantly decrease model performance when such data are not available during training.Additionally, when a model is incrementally adapted to a new domain, it suffers from catastrophic forgetting, causing a significant drop in performance on previously observed domains. Despite recent progress in reducing catastrophic forgetting, its causes and effects remain obscure. Therefore, we study how the representations of semantic segmentation models are affected during domain-incremental learning in adverse weather conditions. Our experiments and representational analyses indicate that catastrophic forgetting is primarily caused by changes to low-level features in domain-incremental learning and that learning more general features on the source domain using pre-training and image augmentations leads to efficient feature reuse in subsequent tasks, which drastically reduces catastrophic forgetting. These findings highlight the importance of methods that facilitate generalized features for effective continual learning algorithms.

Today, many systems use artificial intelligence (AI) to solve complex problems. While this often increases system effectiveness, developing a production-ready AI-based system is a difficult task. Thus, solid AI engineering practices are required to ensure the quality of the resulting system and to improve the development process. While several practices have already been proposed for the development of AI-based systems, detailed practical experiences of applying these practices are rare. In this paper, we aim to address this gap by collecting such experiences during a case study, namely the development of an autonomous stock trading system that uses machine learning functionality to invest in stocks. We selected 10 AI engineering practices from the literature and systematically applied them during development, with the goal to collect evidence about their applicability and effectiveness. Using structured field notes, we documented our experiences. Furthermore, we also used field notes to document challenges that occurred during the development, and the solutions we applied to overcome them. Afterwards, we analyzed the collected field notes, and evaluated how each practice improved the development. Lastly, we compared our evidence with existing literature. Most applied practices improved our system, albeit to varying extent, and we were able to overcome all major challenges. The qualitative results provide detailed accounts about 10 AI engineering practices, as well as challenges and solutions associated with such a project. Our experiences therefore enrich the emerging body of evidence in this field, which may be especially helpful for practitioner teams new to AI engineering.

Systems with artificial intelligence components, so-called AI-based systems, have gained considerable attention recently. However, many organizations have issues with achieving production readiness with such systems. As a means to improve certain software quality attributes and to address frequently occurring problems, design patterns represent proven solution blueprints. While new patterns for AI-based systems are emerging, existing patterns have also been adapted to this new context. The goal of this study is to provide an overview of design patterns for AI-based systems, both new and adapted ones. We want to collect and categorize patterns, and make them accessible for researchers and practitioners. To this end, we first performed a multivocal literature review (MLR) to collect design patterns used with AI-based systems. We then integrated the created pattern collection into a web-based pattern repository to make the patterns browsable and easy to find. As a result, we selected 51 resources (35 white and 16 gray ones), from which we extracted 70 unique patterns used for AI-based systems. Among these are 34 new patterns and 36 traditional ones that have been adapted to this context. Popular pattern categories include "architecture" (25 patterns), "deployment" (16), "implementation" (9), or "security & safety" (9). While some patterns with four or more mentions already seem established, the majority of patterns have only been mentioned once or twice (51 patterns). Our results in this emerging field can be used by researchers as a foundation for follow-up studies and by practitioners to discover relevant patterns for informing the design of AI-based systems.

Algorithm aversion occurs when humans are reluctant to use algorithms despite their superior performance. Studies show that giving users outcome control by providing agency over how models' predictions are incorporated into decision-making mitigates algorithm aversion. We study whether algorithm aversion is mitigated by process control, wherein users can decide what input factors and algorithms to use in model training. We conduct a replication study of outcome control, and test novel process control study conditions on Amazon Mechanical Turk (MTurk) and Prolific. Our results partly confirm prior findings on the mitigating effects of outcome control, while also forefronting reproducibility challenges. We find that process control in the form of choosing the training algorithm mitigates algorithm aversion, but changing inputs does not. Furthermore, giving users both outcome and process control does not reduce algorithm aversion more than outcome or process control alone. This study contributes to design considerations around mitigating algorithm aversion.

In the Machine Learning (ML) literature, a well-known problem is the Dataset Shift problem where, differently from the ML standard hypothesis, the data in the training and test sets can follow different probability distributions, leading ML systems toward poor generalisation performances. This problem is intensely felt in the Brain-Computer Interface (BCI) context, where bio-signals as Electroencephalographic (EEG) are often used. In fact, EEG signals are highly non-stationary both over time and between different subjects. To overcome this problem, several proposed solutions are based on recent transfer learning approaches such as Domain Adaption (DA). In several cases, however, the actual causes of the improvements remain ambiguous. This paper focuses on the impact of data normalisation, or standardisation strategies applied together with DA methods. In particular, using \textit{SEED}, \textit{DEAP}, and \textit{BCI Competition IV 2a} EEG datasets, we experimentally evaluated the impact of different normalization strategies applied with and without several well-known DA methods, comparing the obtained performances. It results that the choice of the normalisation strategy plays a key role on the classifier performances in DA scenarios, and interestingly, in several cases, the use of only an appropriate normalisation schema outperforms the DA technique.

Reliable localization is crucial for autonomous robots to navigate efficiently and safely. Some navigation methods can plan paths with high localizability (which describes the capability of acquiring reliable localization). By following these paths, the robot can access the sensor streams that facilitate more accurate location estimation results by the localization algorithms. However, most of these methods require prior knowledge and struggle to adapt to unseen scenarios or dynamic changes. To overcome these limitations, we propose a novel approach for localizability-enhanced navigation via deep reinforcement learning in dynamic human environments. Our proposed planner automatically extracts geometric features from 2D laser data that are helpful for localization. The planner learns to assign different importance to the geometric features and encourages the robot to navigate through areas that are helpful for laser localization. To facilitate the learning of the planner, we suggest two techniques: (1) an augmented state representation that considers the dynamic changes and the confidence of the localization results, which provides more information and allows the robot to make better decisions, (2) a reward metric that is capable to offer both sparse and dense feedback on behaviors that affect localization accuracy. Our method exhibits significant improvements in lost rate and arrival rate when tested in previously unseen environments.

Exoskeletons and orthoses are wearable mobile systems providing mechanical benefits to the users. Despite significant improvements in the last decades, the technology is not fully mature to be adopted for strenuous and non-programmed tasks. To accommodate this insufficiency, different aspects of this technology need to be analysed and improved. Numerous studies have tried to address some aspects of exoskeletons, e.g. mechanism design, intent prediction, and control scheme. However, most works have focused on a specific element of design or application without providing a comprehensive review framework. This study aims to analyse and survey the contributing aspects to this technology's improvement and broad adoption. To address this, after introducing assistive devices and exoskeletons, the main design criteria will be investigated from both physical Human-Robot Interaction (HRI) perspectives. In order to establish an intelligent HRI strategy and enable intuitive control for users, cognitive HRI will be investigated after a brief introduction to various approaches to their control strategies. The study will be further developed by outlining several examples of known assistive devices in different categories. And some guidelines for exoskeleton selection and possible mitigation of current limitations will be discussed.

Motivated by a study of United Nations voting behaviors, we introduce a regression model for a series of networks that are correlated over time. Our model is a dynamic extension of the additive and multiplicative effects network model (AMEN) of Hoff (2019). In addition to incorporating a temporal structure, the model accommodates two types of missing data thus allows the size of the network to vary over time. We demonstrate via simulations the necessity of various components of the model. We apply the model to the United Nations General Assembly voting data from 1983 to 2014 (Voeten (2013)) to answer interesting research questions regarding international voting behaviors. In addition to finding important factors that could explain the voting behaviors, the model-estimated additive effects, multiplicative effects, and their movements reveal meaningful foreign policy positions and alliances of various countries.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

北京阿比特科技有限公司