We consider the maximum weight $b$-matching problem in the random-order semi-streaming model. Assuming all weights are small integers drawn from $[1,W]$, we present a $2 - \frac{1}{2W} + \varepsilon$ approximation algorithm, using a memory of $O(\max(|M_G|, n) \cdot poly(\log(m),W,1/\varepsilon))$, where $|M_G|$ denotes the cardinality of the optimal matching. Our result generalizes that of Bernstein [Bernstein, 2015], which achieves a $3/2 + \varepsilon$ approximation for the maximum cardinality simple matching. When $W$ is small, our result also improves upon that of Gamlath et al. [Gamlath et al., 2019], which obtains a $2 - \delta$ approximation (for some small constant $\delta \sim 10^{-17}$) for the maximum weight simple matching. In particular, for the weighted $b$-matching problem, ours is the first result beating the approximation ratio of $2$. Our technique hinges on a generalized weighted version of edge-degree constrained subgraphs, originally developed by Bernstein and Stein [Bernstein and Stein, 2015]. Such a subgraph has bounded vertex degree (hence uses only a small number of edges), and can be easily computed. The fact that it contains a $2 - \frac{1}{2W} + \varepsilon$ approximation of the maximum weight matching is proved using the classical K\H{o}nig-Egerv\'ary's duality theorem.
Due to the state trajectory-independent features of invariant Kalman filtering (InEKF), it has attracted widespread attention in the research community for its significantly improved state estimation accuracy and convergence under disturbance. In this paper, we formulate the full-source data fusion navigation problem for fixed-wing unmanned aerial vehicle (UAV) within a framework based on error state right-invariant extended Kalman filtering (ES-RIEKF) on Lie groups. We merge measurements from a multi-rate onboard sensor network on UAVs to achieve real-time estimation of pose, air flow angles, and wind speed. Detailed derivations are provided, and the algorithm's convergence and accuracy improvements over established methods like Error State EKF (ES-EKF) and Nonlinear Complementary Filter (NCF) are demonstrated using real-flight data from UAVs. Additionally, we introduce a semi-aerodynamic model fusion framework that relies solely on ground-measurable parameters. We design and train an Long Short Term Memory (LSTM) deep network to achieve drift-free prediction of the UAV's angle of attack (AOA) and side-slip angle (SA) using easily obtainable onboard data like control surface deflections, thereby significantly reducing dependency on GNSS or complicated aerodynamic model parameters. Further, we validate the algorithm's robust advantages under GNSS denied, where flight data shows that the maximum positioning error stays within 30 meters over a 130-second denial period. To the best of our knowledge, this study is the first to apply ES-RIEKF to full-source navigation applications for fixed-wing UAVs, aiming to provide engineering references for designers. Our implementations using MATLAB/Simulink will open source.
Merging multi-exposure images is a common approach for obtaining high dynamic range (HDR) images, with the primary challenge being the avoidance of ghosting artifacts in dynamic scenes. Recent methods have proposed using deep neural networks for deghosting. However, the methods typically rely on sufficient data with HDR ground-truths, which are difficult and costly to collect. In this work, to eliminate the need for labeled data, we propose SelfHDR, a self-supervised HDR reconstruction method that only requires dynamic multi-exposure images during training. Specifically, SelfHDR learns a reconstruction network under the supervision of two complementary components, which can be constructed from multi-exposure images and focus on HDR color as well as structure, respectively. The color component is estimated from aligned multi-exposure images, while the structure one is generated through a structure-focused network that is supervised by the color component and an input reference (\eg, medium-exposure) image. During testing, the learned reconstruction network is directly deployed to predict an HDR image. Experiments on real-world images demonstrate our SelfHDR achieves superior results against the state-of-the-art self-supervised methods, and comparable performance to supervised ones. Codes are available at //github.com/cszhilu1998/SelfHDR
We consider the problem of sampling from a distribution governed by a potential function. This work proposes an explicit score based MCMC method that is deterministic, resulting in a deterministic evolution for particles rather than a stochastic differential equation evolution. The score term is given in closed form by a regularized Wasserstein proximal, using a kernel convolution that is approximated by sampling. We demonstrate fast convergence on various problems and show improved dimensional dependence of mixing time bounds for the case of Gaussian distributions compared to the unadjusted Langevin algorithm (ULA) and the Metropolis-adjusted Langevin algorithm (MALA). We additionally derive closed form expressions for the distributions at each iterate for quadratic potential functions, characterizing the variance reduction. Empirical results demonstrate that the particles behave in an organized manner, lying on level set contours of the potential. Moreover, the posterior mean estimator of the proposed method is shown to be closer to the maximum a-posteriori estimator compared to ULA and MALA in the context of Bayesian logistic regression. Additional examples demonstrate competitive performance for Bayesian neural network training.
Optimal transport (OT) barycenters are a mathematically grounded way of averaging probability distributions while capturing their geometric properties. In short, the barycenter task is to take the average of a collection of probability distributions w.r.t. given OT discrepancies. We propose a novel algorithm for approximating the continuous Entropic OT (EOT) barycenter for arbitrary OT cost functions. Our approach is built upon the dual reformulation of the EOT problem based on weak OT, which has recently gained the attention of the ML community. Beyond its novelty, our method enjoys several advantageous properties: (i) we establish quality bounds for the recovered solution; (ii) this approach seemlessly interconnects with the Energy-Based Models (EBMs) learning procedure enabling the use of well-tuned algorithms for the problem of interest; (iii) it provides an intuitive optimization scheme avoiding min-max, reinforce and other intricate technical tricks. For validation, we consider several low-dimensional scenarios and image-space setups, including non-Euclidean cost functions. Furthermore, we investigate the practical task of learning the barycenter on an image manifold generated by a pretrained generative model, opening up new directions for real-world applications.
Pre-training speech models on large volumes of data has achieved remarkable success. OpenAI Whisper is a multilingual multitask model trained on 680k hours of supervised speech data. It generalizes well to various speech recognition and translation benchmarks even in a zero-shot setup. However, the full pipeline for developing such models (from data collection to training) is not publicly accessible, which makes it difficult for researchers to further improve its performance and address training-related issues such as efficiency, robustness, fairness, and bias. This work presents an Open Whisper-style Speech Model (OWSM), which reproduces Whisper-style training using an open-source toolkit and publicly available data. OWSM even supports more translation directions and can be more efficient to train. We will publicly release all scripts used for data preparation, training, inference, and scoring as well as pre-trained models and training logs to promote open science.
Language models demonstrate remarkable capacity to generalize representations learned in one modality to downstream tasks in other modalities. Can we trace this ability to individual neurons? We study the case where a frozen text transformer is augmented with vision using a self-supervised visual encoder and a single linear projection learned on an image-to-text task. Outputs of the projection layer are not immediately decodable into language describing image content; instead, we find that translation between modalities occurs deeper within the transformer. We introduce a procedure for identifying "multimodal neurons" that convert visual representations into corresponding text, and decoding the concepts they inject into the model's residual stream. In a series of experiments, we show that multimodal neurons operate on specific visual concepts across inputs, and have a systematic causal effect on image captioning.
Diffusion models, which convert noise into new data instances by learning to reverse a Markov diffusion process, have become a cornerstone in contemporary generative modeling. While their practical power has now been widely recognized, the theoretical underpinnings remain far from mature. In this work, we develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models in discrete time, assuming access to $\ell_2$-accurate estimates of the (Stein) score functions. For a popular deterministic sampler (based on the probability flow ODE), we establish a convergence rate proportional to $1/T$ (with $T$ the total number of steps), improving upon past results; for another mainstream stochastic sampler (i.e., a type of the denoising diffusion probabilistic model), we derive a convergence rate proportional to $1/\sqrt{T}$, matching the state-of-the-art theory. Imposing only minimal assumptions on the target data distribution (e.g., no smoothness assumption is imposed), our results characterize how $\ell_2$ score estimation errors affect the quality of the data generation processes. In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach without resorting to toolboxes for SDEs and ODEs. Further, we design two accelerated variants, improving the convergence to $1/T^2$ for the ODE-based sampler and $1/T$ for the DDPM-type sampler, which might be of independent theoretical and empirical interest.
Despite the promising progress in multi-modal tasks, current large multi-modal models (LMMs) are prone to hallucinating inconsistent descriptions with respect to the associated image and human instructions. This paper addresses this issue by introducing the first large and diverse visual instruction tuning dataset, named Large-scale Robust Visual (LRV)-Instruction. Our dataset comprises 400k visual instructions generated by GPT4, covering 16 vision-and-language tasks with open-ended instructions and answers. Unlike existing studies that primarily focus on positive instruction samples, we design LRV-Instruction to include both positive and negative instructions for more robust visual instruction tuning. Our negative instructions are designed at three semantic levels: (i) Nonexistent Object Manipulation, (ii) Existent Object Manipulation and (iii) Knowledge Manipulation. To efficiently measure the hallucination generated by LMMs, we propose GPT4-Assisted Visual Instruction Evaluation (GAVIE), a stable approach to evaluate visual instruction tuning like human experts. GAVIE does not require human-annotated groundtruth answers and can adapt to diverse instruction formats. We conduct comprehensive experiments to investigate the hallucination of LMMs. Our results demonstrate existing LMMs exhibit significant hallucinations when presented with our negative instructions, particularly Existent Object and Knowledge Manipulation instructions. Moreover, we successfully mitigate hallucination by finetuning MiniGPT4 and mPLUG-Owl on LRV-Instruction while improving performance on several public datasets compared to state-of-the-art methods. Additionally, we observed that a balanced ratio of positive and negative instances in the training data leads to a more robust model.
Large language models (LLMs) have exhibited remarkable ability in textual generation. However, in complex reasoning tasks such as code generation, generating the correct answer in a single attempt remains a formidable challenge for LLMs. Previous research has explored solutions by aggregating multiple outputs, leveraging the consistency among them. However, none of them have comprehensively captured this consistency from different perspectives. In this paper, we propose the Multi-Perspective Self-Consistency (MPSC) framework, a novel decoding strategy for LLM that incorporates both inter-consistency across outputs from multiple perspectives and intra-consistency within a single perspective. Specifically, we ask LLMs to sample multiple diverse outputs from various perspectives for a given query and then construct a multipartite graph based on them. With two predefined measures of consistency, we embed both inter- and intra-consistency information into the graph. The optimal choice is then determined based on consistency analysis in the graph. We conduct comprehensive evaluation on the code generation task by introducing solution, specification and test case as three perspectives. We leverage a code interpreter to quantitatively measure the inter-consistency and propose several intra-consistency measure functions. Our MPSC framework significantly boosts the performance on various popular benchmarks, including HumanEval (+17.60%), HumanEval Plus (+17.61%), MBPP (+6.50%) and CodeContests (+11.82%) in Pass@1, when compared to original outputs generated from ChatGPT, and even surpassing GPT-4.
Learning-based multi-view stereo (MVS) method heavily relies on feature matching, which requires distinctive and descriptive representations. An effective solution is to apply non-local feature aggregation, e.g., Transformer. Albeit useful, these techniques introduce heavy computation overheads for MVS. Each pixel densely attends to the whole image. In contrast, we propose to constrain non-local feature augmentation within a pair of lines: each point only attends the corresponding pair of epipolar lines. Our idea takes inspiration from the classic epipolar geometry, which shows that one point with different depth hypotheses will be projected to the epipolar line on the other view. This constraint reduces the 2D search space into the epipolar line in stereo matching. Similarly, this suggests that the matching of MVS is to distinguish a series of points lying on the same line. Inspired by this point-to-line search, we devise a line-to-point non-local augmentation strategy. We first devise an optimized searching algorithm to split the 2D feature maps into epipolar line pairs. Then, an Epipolar Transformer (ET) performs non-local feature augmentation among epipolar line pairs. We incorporate the ET into a learning-based MVS baseline, named ET-MVSNet. ET-MVSNet achieves state-of-the-art reconstruction performance on both the DTU and Tanks-and-Temples benchmark with high efficiency. Code is available at //github.com/TQTQliu/ET-MVSNet.