Effective operation and seamless cooperation of robotic systems are a fundamental component of next-generation technologies and applications. In contexts such as disaster response, swarm operations require coordinated behavior and mobility control to be handled in a distributed manner, with the quality of the agents' actions heavily relying on the communication between them and the underlying network. In this paper, we formulate the problem of dynamic network bridging in a novel Decentralized Partially Observable Markov Decision Process (Dec-POMDP), where a swarm of agents cooperates to form a link between two distant moving targets. Furthermore, we propose a Multi-Agent Reinforcement Learning (MARL) approach for the problem based on Graph Convolutional Reinforcement Learning (DGN) which naturally applies to the networked, distributed nature of the task. The proposed method is evaluated in a simulated environment and compared to a centralized heuristic baseline showing promising results. Moreover, a further step in the direction of sim-to-real transfer is presented, by additionally evaluating the proposed approach in a near Live Virtual Constructive (LVC) UAV framework.
Semantic Image Segmentation facilitates a multitude of real-world applications ranging from autonomous driving over industrial process supervision to vision aids for human beings. These models are usually trained in a supervised fashion using example inputs. Distribution Shifts between these examples and the inputs in operation may cause erroneous segmentations. The robustness of semantic segmentation models against distribution shifts caused by differing camera or lighting setups, lens distortions, adversarial inputs and image corruptions has been topic of recent research. However, robustness against spatially varying radial distortion effects that can be caused by uneven glass structures (e.g. windows) or the chaotic refraction in heated air has not been addressed by the research community yet. We propose a method to synthetically augment existing datasets with spatially varying distortions. Our experiments show, that these distortion effects degrade the performance of state-of-the-art segmentation models. Pretraining and enlarged model capacities proof to be suitable strategies for mitigating performance degradation to some degree, while fine-tuning on distorted images only leads to marginal performance improvements.
When optimizing machine learning models, there are various scenarios where gradient computations are challenging or even infeasible. Furthermore, in reinforcement learning (RL), preference-based RL that only compares between options has wide applications, including reinforcement learning with human feedback in large language models. In this paper, we systematically study optimization of a smooth function $f\colon\mathbb{R}^n\to\mathbb{R}$ only assuming an oracle that compares function values at two points and tells which is larger. When $f$ is convex, we give two algorithms using $\tilde{O}(n/\epsilon)$ and $\tilde{O}(n^{2})$ comparison queries to find an $\epsilon$-optimal solution, respectively. When $f$ is nonconvex, our algorithm uses $\tilde{O}(n/\epsilon^2)$ comparison queries to find an $\epsilon$-approximate stationary point. All these results match the best-known zeroth-order algorithms with function evaluation queries in $n$ dependence, thus suggest that \emph{comparisons are all you need for optimizing smooth functions using derivative-free methods}. In addition, we also give an algorithm for escaping saddle points and reaching an $\epsilon$-second order stationary point of a nonconvex $f$, using $\tilde{O}(n^{1.5}/\epsilon^{2.5})$ comparison queries.
Traceability, the ability to trace relevant software artifacts to support reasoning about the quality of the software and its development process, plays a crucial role in requirements and software engineering, particularly for safety-critical systems. In this chapter, we provide a comprehensive overview of the representative tasks in requirement traceability for which natural language processing (NLP) and related techniques have made considerable progress in the past decade. We first present the definition of traceability in the context of requirements and the overall engineering process, as well as other important concepts related to traceability tasks. Then, we discuss two tasks in detail, including trace link recovery and trace link maintenance. We also introduce two other related tasks concerning when trace links are used in practical contexts. For each task, we explain the characteristics of the task, how it can be approached through NLP techniques, and how to design and conduct the experiment to demonstrate the performance of the NLP techniques. We further discuss practical considerations on how to effectively apply NLP techniques and assess their effectiveness regarding the data set collection, the metrics selection, and the role of humans when evaluating the NLP approaches. Overall, this chapter prepares the readers with the fundamental knowledge of designing automated traceability solutions enabled by NLP in practice.
In autonomous robotics, a critical challenge lies in developing robust solutions for Active Collaborative SLAM, wherein multiple robots collaboratively explore and map an unknown environment while intelligently coordinating their movements and sensor data acquisitions. In this article, we present an efficient centralized frontier sharing approach that maximizes exploration by taking into account information gain in the merged map, distance, and reward computation among frontier candidates and encourages the spread of agents into the environment. Eventually, our method efficiently spreads the robots for maximum exploration while keeping SLAM uncertainty low. Additionally, we also present two coordination approaches, synchronous and asynchronous to prioritize robot goal assignments by the central server. The proposed method is implemented in ROS and evaluated through simulation and experiments on publicly available datasets and similar methods, rendering promising results.
With the benefit of deep learning techniques, recent researches have made significant progress in image compression artifacts reduction. Despite their improved performances, prevailing methods only focus on learning a mapping from the compressed image to the original one but ignore the intrinsic attributes of the given compressed images, which greatly harms the performance of downstream parsing tasks. Different from these methods, we propose to decouple the intrinsic attributes into two complementary features for artifacts reduction,ie, the compression-insensitive features to regularize the high-level semantic representations during training and the compression-sensitive features to be aware of the compression degree. To achieve this, we first employ adversarial training to regularize the compressed and original encoded features for retaining high-level semantics, and we then develop the compression quality-aware feature encoder for compression-sensitive features. Based on these dual complementary features, we propose a Dual Awareness Guidance Network (DAGN) to utilize these awareness features as transformation guidance during the decoding phase. In our proposed DAGN, we develop a cross-feature fusion module to maintain the consistency of compression-insensitive features by fusing compression-insensitive features into the artifacts reduction baseline. Our method achieves an average 2.06 dB PSNR gains on BSD500, outperforming state-of-the-art methods, and only requires 29.7 ms to process one image on BSD500. Besides, the experimental results on LIVE1 and LIU4K also demonstrate the efficiency, effectiveness, and superiority of the proposed method in terms of quantitative metrics, visual quality, and downstream machine vision tasks.
Despite significant technological advancements, the process of programming robots for adaptive assembly remains labor-intensive, demanding expertise in multiple domains and often resulting in task-specific, inflexible code. This work explores the potential of Large Language Models (LLMs), like ChatGPT, to automate this process, leveraging their ability to understand natural language instructions, generalize examples to new tasks, and write code. In this paper, we suggest how these abilities can be harnessed and applied to real-world challenges in the manufacturing industry. We present a novel system that uses ChatGPT to automate the process of programming robots for adaptive assembly by decomposing complex tasks into simpler subtasks, generating robot control code, executing the code in a simulated workcell, and debugging syntax and control errors, such as collisions. We outline the architecture of this system and strategies for task decomposition and code generation. Finally, we demonstrate how our system can autonomously program robots for various assembly tasks in a real-world project.
Current medical artificial intelligence systems are often limited to narrow applications, hindering their widespread adoption in clinical practice. To address this limitation, we propose MedVersa, a generalist learner that enables flexible learning and tasking for medical image interpretation. By leveraging a large language model as a learnable orchestrator, MedVersa can learn from both visual and linguistic supervision, support multimodal inputs, and perform real-time task specification. This versatility allows MedVersa to adapt to various clinical scenarios and perform multifaceted medical image analysis. We introduce MedInterp, the largest multimodal dataset to date for medical image interpretation, consisting of over 13 million annotated instances spanning 11 tasks across 3 modalities, to support the development of MedVersa. Our experiments demonstrate that MedVersa achieves state-of-the-art performance in 9 tasks, sometimes outperforming specialist counterparts by over 10%. MedVersa is the first to showcase the viability of multimodal generative medical AI in implementing multimodal outputs, inputs, and dynamic task specification, highlighting its potential as a multifunctional system for comprehensive medical image analysis. This generalist approach to medical image interpretation paves the way for more adaptable and efficient AI-assisted clinical decision-making.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.