亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we generalize the Pearl and Neyman-Rubin methodologies in causal inference by introducing a generalized approach that incorporates fuzzy logic. Indeed, we introduce a fuzzy causal inference approach that consider both the vagueness and imprecision inherent in data, as well as the subjective human perspective characterized by fuzzy terms such as 'high', 'medium', and 'low'. To do so, we introduce two fuzzy causal effect formulas: the Fuzzy Average Treatment Effect (FATE) and the Generalized Fuzzy Average Treatment Effect (GFATE), together with their normalized versions: NFATE and NGFATE. When dealing with a binary treatment variable, our fuzzy causal effect formulas coincide with classical Average Treatment Effect (ATE) formula, that is a well-established and popular metric in causal inference. In FATE, all values of the treatment variable are considered equally important. In contrast, GFATE takes into account the rarity and frequency of these values. We show that for linear Structural Equation Models (SEMs), the normalized versions of our formulas, NFATE and NGFATE, are equivalent to ATE. Further, we provide identifiability criteria for these formulas and show their stability with respect to minor variations in the fuzzy subsets and the probability distributions involved. This ensures the robustness of our approach in handling small perturbations in the data. Finally, we provide several experimental examples to empirically validate and demonstrate the practical application of our proposed fuzzy causal inference methods.

相關內容

In this paper, we propose a real-world benchmark for studying robotic learning in the context of functional manipulation: a robot needs to accomplish complex long-horizon behaviors by composing individual manipulation skills in functionally relevant ways. The core design principles of our Functional Manipulation Benchmark (FMB) emphasize a harmonious balance between complexity and accessibility. Tasks are deliberately scoped to be narrow, ensuring that models and datasets of manageable scale can be utilized effectively to track progress. Simultaneously, they are diverse enough to pose a significant generalization challenge. Furthermore, the benchmark is designed to be easily replicable, encompassing all essential hardware and software components. To achieve this goal, FMB consists of a variety of 3D-printed objects designed for easy and accurate replication by other researchers. The objects are procedurally generated, providing a principled framework to study generalization in a controlled fashion. We focus on fundamental manipulation skills, including grasping, repositioning, and a range of assembly behaviors. The FMB can be used to evaluate methods for acquiring individual skills, as well as methods for combining and ordering such skills to solve complex, multi-stage manipulation tasks. We also offer an imitation learning framework that includes a suite of policies trained to solve the proposed tasks. This enables researchers to utilize our tasks as a versatile toolkit for examining various parts of the pipeline. For example, researchers could propose a better design for a grasping controller and evaluate it in combination with our baseline reorientation and assembly policies as part of a pipeline for solving multi-stage tasks. Our dataset, object CAD files, code, and evaluation videos can be found on our project website: //functional-manipulation-benchmark.github.io

In this paper, we propose an efficient multi-stage algorithm for non-adaptive Group Testing (GT) with general correlated prior statistics. The proposed solution can be applied to any correlated statistical prior represented in trellis, e.g., finite state machines and Markov processes. We introduce a variation of List Viterbi Algorithm (LVA) to enable accurate recovery using much fewer tests than objectives, which efficiently gains from the correlated prior statistics structure. Our numerical results demonstrate that the proposed Multi-Stage GT (MSGT) algorithm can obtain the optimal Maximum A Posteriori (MAP) performance with feasible complexity in practical regimes, such as with COVID-19 and sparse signal recovery applications, and reduce in the scenarios tested the number of pooled tests by at least $25\%$ compared to existing classical low complexity GT algorithms. Moreover, we analytically characterize the complexity of the proposed MSGT algorithm that guarantees its efficiency.

In this conceptual paper, we review existing literature on artificial intelligence/machine learning (AI/ML) education to identify three approaches to how learning and teaching ML could be conceptualized. One of them, a data-driven approach, emphasizes providing young people with opportunities to create data sets, train, and test models. A second approach, learning algorithm-driven, prioritizes learning about how the learning algorithms or engines behind how ML models work. In addition, we identify efforts within a third approach that integrates the previous two. In our review, we focus on how the approaches: (1) glassbox and blackbox different aspects of ML, (2) build on learner interests and provide opportunities for designing applications, (3) integrate ethics and justice. In the discussion, we address the challenges and opportunities of current approaches and suggest future directions for the design of learning activities.

State-of-the-art LLMs often rely on scale with high computational costs, which has sparked a research agenda to reduce parameter counts and costs without significantly impacting performance. Our study focuses on Transformer-based LLMs, specifically applying low-rank parametrization to the computationally intensive feedforward networks (FFNs), which are less studied than attention blocks. In contrast to previous works, (i) we explore low-rank parametrization at scale, up to 1.3B parameters; (ii) within Transformer language models rather than convolutional architectures; and (iii) starting from training from scratch. Experiments on the large RefinedWeb dataset show that low-rank parametrization is both efficient (e.g., 2.6$\times$ FFN speed-up with 32\% parameters) and effective during training. Interestingly, these structured FFNs exhibit steeper scaling curves than the original models. Motivated by this finding, we develop the wide and structured networks surpassing the current medium-sized and large-sized Transformer in perplexity and throughput performance. Our code is available at //github.com/CLAIRE-Labo/StructuredFFN/tree/main.

This short paper presents preliminary research on the Case-Enhanced Vision Transformer (CEViT), a similarity measurement method aimed at improving the explainability of similarity assessments for image data. Initial experimental results suggest that integrating CEViT into k-Nearest Neighbor (k-NN) classification yields classification accuracy comparable to state-of-the-art computer vision models, while adding capabilities for illustrating differences between classes. CEViT explanations can be influenced by prior cases, to illustrate aspects of similarity relevant to those cases.

In this paper, we propose two mixed precision algorithms for Block-Jacobi preconditioner(BJAC): a fixed low precision strategy and an adaptive precision strategy. We evaluate the performance improvement of the proposed mixed precision BJAC preconditioners combined with the preconditioned conjugate gradient algorithm using problems including diffusion equations and radiation hydrodynamics equations. Numerical results show that, compared to the uniform high precision PCG algorithm, the mixed precision preconditioners can achieve speedups from 1.3 to 1.8 without sacrificing accuracy. Furthermore, we observe the phenomenon of convergence delay in some test cases for the mixed precision preconditioners, and further analyse the matrix features associate with the convergence delay behavior.

In this paper, we propose a novel data valuation method for a Dataset Retrieval (DR) use case in Ireland's National mapping agency. To the best of our knowledge, data valuation has not yet been applied to Dataset Retrieval. By leveraging metadata and a user's preferences, we estimate the personal value of each dataset to facilitate dataset retrieval and filtering. We then validated the data value-based ranking against the stakeholders' ranking of the datasets. The proposed data valuation method and use case demonstrated that data valuation is promising for dataset retrieval. For instance, the outperforming dataset retrieval based on our approach obtained 0.8207 in terms of NDCG@5 (the truncated Normalized Discounted Cumulative Gain at 5). This study is unique in its exploration of a data valuation-based approach to dataset retrieval and stands out because, unlike most existing methods, our approach is validated using the stakeholders ranking of the datasets.

In this survey, we address the key challenges in Large Language Models (LLM) research, focusing on the importance of interpretability. Driven by increasing interest from AI and business sectors, we highlight the need for transparency in LLMs. We examine the dual paths in current LLM research and eXplainable Artificial Intelligence (XAI): enhancing performance through XAI and the emerging focus on model interpretability. Our paper advocates for a balanced approach that values interpretability equally with functional advancements. Recognizing the rapid development in LLM research, our survey includes both peer-reviewed and preprint (arXiv) papers, offering a comprehensive overview of XAI's role in LLM research. We conclude by urging the research community to advance both LLM and XAI fields together.

In this paper, we propose a martingale-based neural network, SOC-MartNet, for solving high-dimensional Hamilton-Jacobi-Bellman (HJB) equations where no explicit expression is needed for the infimum of the Hamiltonian, \inf_{u \in U} H(t,x,u, z,p), and stochastic optimal control problems (SOCPs) with controls on both drift and volatility. We reformulate the HJB equations for the value function by training two neural networks, one for the value function and one for the optimal control with the help of two stochastic processes - a Hamiltonian process and a cost process. The control and value networks are trained such that the associated Hamiltonian process is minimized to satisfy the minimum principle of a feedback SOCP, and the cost process becomes a martingale, thus, ensuring the value function network as the solution to the corresponding HJB equation. Moreover, to enforce the martingale property for the cost process, we employ an adversarial network and construct a loss function characterizing the projection property of the conditional expectation condition of the martingale. Numerical results show that the proposed SOC-MartNet is effective and efficient for solving HJB-type equations and SOCPs with a dimension up to 2000 in a small number of epochs (less than 20) or stochastic gradient method iterations (less than 2000) for the training.

In this paper, we propose a novel graph-based methodology to evaluate the functional correctness of SQL generation. Conventional metrics for assessing SQL code generation, such as matching-based and execution-based methods (e.g., exact set match and execution accuracy), are subject to two primary limitations. Firstly, the former fails to effectively assess functional correctness, as different SQL queries may possess identical functionalities. Secondly, the latter is susceptible to producing false positive samples in evaluations. Our proposed evaluation method, \texttt{FuncEvalGMN}, does not depend on the sufficient preparation of the test data, and it enables precise testing of the functional correctness of the code. Firstly, we parse SQL using a relational operator tree (ROT) called \textit{Relnode}, which contains rich semantic information from the perspective of logical execution.Then, we introduce a GNN-based approach for predicting the functional correctness of generated SQL. This approach incorporates global positional embeddings to address the limitations with the loss of topological information in conventional graph matching frameworks. As an auxiliary contribution, we propose a rule-based matching algorithm, Relnode Partial Matching (\texttt{RelPM}) as a baseline. Finally, we contribute a dataset, \texttt{Pair-Aug-Spider} with a training set and two testing sets, each comprising pairs of SQL codes to simulate various SQL code evaluation scenarios. The training set and one testing dataset focus on code generation using large language models (LLMs), while the other emphasizes SQL equivalence rewriting.

北京阿比特科技有限公司