Scientists often must simultaneously localize and discover signals. For instance, in genetic fine-mapping, high correlations between nearby genetic variants make it hard to identify the exact locations of causal variants. So the statistical task is to output as many disjoint regions containing a signal as possible, each as small as possible, while controlling false positives. Similar problems arise in any application where signals cannot be perfectly localized, such as locating stars in astronomical surveys and changepoint detection in sequential data. Common Bayesian approaches to these problems involve computing a posterior distribution over signal locations. However, existing procedures to translate these posteriors into actual credible regions for the signals fail to capture all the information in the posterior, leading to lower power and (sometimes) inflated false discoveries. With this motivation, we introduce Bayesian Linear Programming (BLiP). Given a posterior distribution over signals, BLiP outputs credible regions for signals which verifiably nearly maximize expected power while controlling false positives. BLiP overcomes an extremely high-dimensional and nonconvex problem to verifiably nearly maximize expected power while controlling false positives. BLiP is very computationally efficient compared to the cost of computing the posterior and can wrap around nearly any Bayesian model and algorithm. Applying BLiP to existing state-of-the-art analyses of UK Biobank data (for genetic fine-mapping) and the Sloan Digital Sky Survey (for astronomical point source detection) increased power by 30-120% in just a few minutes of additional computation. BLiP is implemented in pyblip (Python) and blipr (R).
We consider a subclass of $n$-player stochastic games, in which players have their own internal state/action spaces while they are coupled through their payoff functions. It is assumed that players' internal chains are driven by independent transition probabilities. Moreover, players can receive only realizations of their payoffs, not the actual functions, and cannot observe each other's states/actions. For this class of games, we first show that finding a stationary Nash equilibrium (NE) policy without any assumption on the reward functions is interactable. However, for general reward functions, we develop polynomial-time learning algorithms based on dual averaging and dual mirror descent, which converge in terms of the averaged Nikaido-Isoda distance to the set of $\epsilon$-NE policies almost surely or in expectation. In particular, under extra assumptions on the reward functions such as social concavity, we derive polynomial upper bounds on the number of iterates to achieve an $\epsilon$-NE policy with high probability. Finally, we evaluate the effectiveness of the proposed algorithms in learning $\epsilon$-NE policies using numerical experiments for energy management in smart grids.
Planning for multi-robot teams in complex environments is a challenging problem, especially when these teams must coordinate to accomplish a common objective. In general, optimal solutions to these planning problems are computationally intractable, since the decision space grows exponentially with the number of robots. In this paper, we present a novel approach for multi-robot planning on topological graphs using mixed-integer programming. Central to our approach is the notion of a dynamic topological graph, where edge weights vary dynamically based on the locations of the robots in the graph. We construct this graph using the critical features of the planning problem and the relationships between robots; we then leverage mixed-integer programming to minimize a shared cost that depends on the paths of all robots through the graph. To improve computational tractability, we formulated an objective function with a fully convex relaxation and designed our decision space around eliminating the exponential dependence on the number of robots. We test our approach on a multi-robot reconnaissance scenario, where robots must coordinate to minimize detectability and maximize safety while gathering information. We demonstrate that our approach is able to scale to a series of representative scenarios and is capable of computing optimal coordinated strategic behaviors for autonomous multi-robot teams in seconds.
ChatGPT is a large language model trained by OpenAI. In this technical report, we explore for the first time the capability of ChatGPT for programming numerical algorithms. Specifically, we examine the capability of GhatGPT for generating codes for numerical algorithms in different programming languages, for debugging and improving written codes by users, for completing missed parts of numerical codes, rewriting available codes in other programming languages, and for parallelizing serial codes. Additionally, we assess if ChatGPT can recognize if given codes are written by humans or machines. To reach this goal, we consider a variety of mathematical problems such as the Poisson equation, the diffusion equation, the incompressible Navier-Stokes equations, compressible inviscid flow, eigenvalue problems, solving linear systems of equations, storing sparse matrices, etc. Furthermore, we exemplify scientific machine learning such as physics-informed neural networks and convolutional neural networks with applications to computational physics. Through these examples, we investigate the successes, failures, and challenges of ChatGPT. Examples of failures are producing singular matrices, operations on arrays with incompatible sizes, programming interruption for relatively long codes, etc. Our outcomes suggest that ChatGPT can successfully program numerical algorithms in different programming languages, but certain limitations and challenges exist that require further improvement of this machine learning model.
Based on a novel dynamic Whittle likelihood approximation for locally stationary processes, a Bayesian nonparametric approach to estimating the time-varying spectral density is proposed. This dynamic frequency-domain based likelihood approximation is able to depict the time-frequency evolution of the process by utilizing the moving periodogram previously introduced in the bootstrap literature. The posterior distribution is obtained by updating a bivariate extension of the Bernstein-Dirichlet process prior with the dynamic Whittle likelihood. Asymptotic properties such as sup-norm posterior consistency and L2-norm posterior contraction rates are presented. Additionally, this methodology enables model selection between stationarity and non-stationarity based on the Bayes factor. The finite-sample performance of the method is investigated in simulation studies and applications to real-life data-sets are presented.
Causal discovery and causal effect estimation are two fundamental tasks in causal inference. While many methods have been developed for each task individually, statistical challenges arise when applying these methods jointly: estimating causal effects after running causal discovery algorithms on the same data leads to "double dipping," invalidating the coverage guarantees of classical confidence intervals. To this end, we develop tools for valid post-causal-discovery inference. Across empirical studies, we show that a naive combination of causal discovery and subsequent inference algorithms leads to highly inflated miscoverage rates; on the other hand, applying our method provides reliable coverage while achieving more accurate causal discovery than data splitting.
Value iteration can find the optimal replenishment policy for a perishable inventory problem, but is computationally demanding due to the large state spaces that are required to represent the age profile of stock. The parallel processing capabilities of modern GPUs can reduce the wall time required to run value iteration by updating many states simultaneously. The adoption of GPU-accelerated approaches has been limited in operational research relative to other fields like machine learning, in which new software frameworks have made GPU programming widely accessible. We used the Python library JAX to implement value iteration and simulators of the underlying Markov decision processes in a high-level API, and relied on this library's function transformations and compiler to efficiently utilize GPU hardware. Our method can extend use of value iteration to settings that were previously considered infeasible or impractical. We demonstrate this on example scenarios from three recent studies which include problems with over 16 million states and additional problem features, such as substitution between products, that increase computational complexity. We compare the performance of the optimal replenishment policies to heuristic policies, fitted using simulation optimization in JAX which allowed the parallel evaluation of multiple candidate policy parameters on thousands of simulated years. The heuristic policies gave a maximum optimality gap of 2.49%. Our general approach may be applicable to a wide range of problems in operational research that would benefit from large-scale parallel computation on consumer-grade GPU hardware.
Temporal data, representing chronological observations of complex systems, has always been a typical data structure that can be widely generated by many domains, such as industry, medicine and finance. Analyzing this type of data is extremely valuable for various applications. Thus, different temporal data analysis tasks, eg, classification, clustering and prediction, have been proposed in the past decades. Among them, causal discovery, learning the causal relations from temporal data, is considered an interesting yet critical task and has attracted much research attention. Existing casual discovery works can be divided into two highly correlated categories according to whether the temporal data is calibrated, ie, multivariate time series casual discovery, and event sequence casual discovery. However, most previous surveys are only focused on the time series casual discovery and ignore the second category. In this paper, we specify the correlation between the two categories and provide a systematical overview of existing solutions. Furthermore, we provide public datasets, evaluation metrics and new perspectives for temporal data casual discovery.
The flocking motion control is concerned with managing the possible conflicts between local and team objectives of multi-agent systems. The overall control process guides the agents while monitoring the flock-cohesiveness and localization. The underlying mechanisms may degrade due to overlooking the unmodeled uncertainties associated with the flock dynamics and formation. On another side, the efficiencies of the various control designs rely on how quickly they can adapt to different dynamic situations in real-time. An online model-free policy iteration mechanism is developed here to guide a flock of agents to follow an independent command generator over a time-varying graph topology. The strength of connectivity between any two agents or the graph edge weight is decided using a position adjacency dependent function. An online recursive least squares approach is adopted to tune the guidance strategies without knowing the dynamics of the agents or those of the command generator. It is compared with another reinforcement learning approach from the literature which is based on a value iteration technique. The simulation results of the policy iteration mechanism revealed fast learning and convergence behaviors with less computational effort.
Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.