亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Motivated by applications in distributed storage, the notion of a locally recoverable code (LRC) was introduced a few years back. In an LRC, any coordinate of a codeword is recoverable by accessing only a small number of other coordinates. While different properties of LRCs have been well-studied, their performance on channels with random erasures or errors has been mostly unexplored. In this paper, we analyze the performance of LRCs over such stochastic channels. In particular, for input-symmetric discrete memoryless channels, we give a tight characterization of the gap to Shannon capacity when LRCs are used over the channel. Our results hold for a general notion of LRCs that correct multiple local erasures.

相關內容

Sequential decoding, commonly applied to substitution channels, is a sub-optimal alternative to Viterbi decoding with significantly reduced memory costs. In this work, a sequential decoder for convolutional codes over channels that are prone to insertion, deletion, and substitution errors, is described and analyzed. Our decoder expands the code trellis by a new channel-state variable, called drift state, as proposed by Davey and MacKay. A suitable decoding metric on that trellis for sequential decoding is derived, generalizing the original Fano metric. The decoder is also extended to facilitate the simultaneous decoding of multiple received sequences that arise from a single transmitted sequence. Under low-noise environments, our decoding approach reduces the decoding complexity by a couple orders of magnitude in comparison to Viterbi's algorithm, albeit at slightly higher bit error rates. An analytical method to determine the computational cutoff rate is also suggested. This analysis is supported with numerical evaluations of bit error rates and computational complexity, which are compared with respect to optimal Viterbi decoding.

Ordered sequences of data, specified with a join operation to combine sequences, serve as a foundation for the implementation of parallel functional algorithms. This abstract data type can be elegantly and efficiently implemented using balanced binary trees, where a join operation is provided to combine two trees and rebalance as necessary. In this work, we present a verified implementation and cost analysis of joinable red-black trees in $\textbf{calf}$, a dependent type theory for cost analysis. We implement red-black trees and auxiliary intermediate data structures in such a way that all correctness invariants are intrinsically maintained. Then, we describe and verify precise cost bounds on the operations, making use of the red-black tree invariants. Finally, we implement standard algorithms on sequences using the simple join-based signature and bound their cost in the case that red-black trees are used as the underlying implementation. All proofs are formally mechanized using the embedding of $\textbf{calf}$ in the Agda theorem prover.

In many branches of engineering, Banach contraction mapping theorem is employed to establish the convergence of certain deterministic algorithms. Randomized versions of these algorithms have been developed that have proved useful in data-driven problems. In a class of randomized algorithms, in each iteration, the contraction map is approximated with an operator that uses independent and identically distributed samples of certain random variables. This leads to iterated random operators acting on an initial point in a complete metric space, and it generates a Markov chain. In this paper, we develop a new stochastic dominance based proof technique, called probabilistic contraction analysis, for establishing the convergence in probability of Markov chains generated by such iterated random operators in certain limiting regime. The methods developed in this paper provides a general framework for understanding convergence of a wide variety of Monte Carlo methods in which contractive property is present. We apply the convergence result to conclude the convergence of fitted value iteration and fitted relative value iteration in continuous state and continuous action Markov decision problems as representative applications of the general framework developed here.

A resource leak occurs when a program fails to free some finite resource after it is no longer needed. Such leaks are a significant cause of real-world crashes and performance problems. Recent work proposed an approach to prevent resource leaks based on checking resource management specifications. A resource management specification expresses how the program allocates resources, passes them around, and releases them; it also tracks the ownership relationship between objects and resources, and aliasing relationships between objects. While this specify-and-verify approach has several advantages compared to prior techniques, the need to manually write annotations presents a significant barrier to its practical adoption. This paper presents a novel technique to automatically infer a resource management specification for a program, broadening the applicability of specify-and-check verification for resource leaks. Inference in this domain is challenging because resource management specifications differ significantly in nature from the types that most inference techniques target. Further, for practical effectiveness, we desire a technique that can infer the resource management specification intended by the developer, even in cases when the code does not fully adhere to that specification. We address these challenges through a set of inference rules carefully designed to capture real-world coding patterns, yielding an effective fixed-point-based inference algorithm. We have implemented our inference algorithm in two different systems, targeting programs written in Java and C#. In an experimental evaluation, our technique inferred 85.5% of the annotations that programmers had written manually for the benchmarks. Further, the verifier issued nearly the same rate of false alarms with the manually-written and automatically-inferred annotations.

We explore a knowledge sanitization approach to mitigate the privacy concerns associated with large language models (LLMs). LLMs trained on a large corpus of Web data can memorize and potentially reveal sensitive or confidential information, raising critical security concerns. Our technique fine-tunes these models, prompting them to generate harmless responses such as ``I don't know'' when queried about specific information. Experimental results in a closed-book question-answering task show that our straightforward method not only minimizes particular knowledge leakage but also preserves the overall performance of LLM. These two advantages strengthen the defense against extraction attacks and reduces the emission of harmful content such as hallucinations.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.

Attention Model has now become an important concept in neural networks that has been researched within diverse application domains. This survey provides a structured and comprehensive overview of the developments in modeling attention. In particular, we propose a taxonomy which groups existing techniques into coherent categories. We review the different neural architectures in which attention has been incorporated, and also show how attention improves interpretability of neural models. Finally, we discuss some applications in which modeling attention has a significant impact. We hope this survey will provide a succinct introduction to attention models and guide practitioners while developing approaches for their applications.

Many current applications use recommendations in order to modify the natural user behavior, such as to increase the number of sales or the time spent on a website. This results in a gap between the final recommendation objective and the classical setup where recommendation candidates are evaluated by their coherence with past user behavior, by predicting either the missing entries in the user-item matrix, or the most likely next event. To bridge this gap, we optimize a recommendation policy for the task of increasing the desired outcome versus the organic user behavior. We show this is equivalent to learning to predict recommendation outcomes under a fully random recommendation policy. To this end, we propose a new domain adaptation algorithm that learns from logged data containing outcomes from a biased recommendation policy and predicts recommendation outcomes according to random exposure. We compare our method against state-of-the-art factorization methods, in addition to new approaches of causal recommendation and show significant improvements.

北京阿比特科技有限公司