亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Literature-Based Discovery (LBD) aims to discover new scientific knowledge by mining papers and generating hypotheses. Standard LBD is limited to predicting pairwise relations between discrete concepts (e.g., drug-disease links), and ignores critical contexts like experimental settings (e.g., a specific patient population where a drug is evaluated) and background motivations (e.g., to find drugs without specific side effects). We address these limitations with a novel formulation of contextualized-LBD (C-LBD): generating scientific hypotheses in natural language, while grounding them in a context that controls the hypothesis search space. We present a modeling framework using retrieval of ``inspirations'' from past scientific papers. Our evaluations reveal that GPT-4 tends to generate ideas with overall low technical depth and novelty, while our inspiration prompting approaches partially mitigate this issue. Our work represents a first step toward building language models that generate new ideas derived from scientific literature.

相關內容

Continuous Relation Extraction (CRE) aims to incrementally learn relation knowledge from a non-stationary stream of data. Since the introduction of new relational tasks can overshadow previously learned information, catastrophic forgetting becomes a significant challenge in this domain. Current replay-based training paradigms prioritize all data uniformly and train memory samples through multiple rounds, which would result in overfitting old tasks and pronounced bias towards new tasks because of the imbalances of the replay set. To handle the problem, we introduce the DecouPled CRE (DP-CRE) framework that decouples the process of prior information preservation and new knowledge acquisition. This framework examines alterations in the embedding space as new relation classes emerge, distinctly managing the preservation and acquisition of knowledge. Extensive experiments show that DP-CRE significantly outperforms other CRE baselines across two datasets.

Predictor-based methods have substantially enhanced Neural Architecture Search (NAS) optimization. The efficacy of these predictors is largely influenced by the method of encoding neural network architectures. While traditional encodings used an adjacency matrix describing the graph structure of a neural network, novel encodings embrace a variety of approaches from unsupervised pretraining of latent representations to vectors of zero-cost proxies. In this paper, we categorize and investigate neural encodings from three main types: structural, learned, and score-based. Furthermore, we extend these encodings and introduce \textit{unified encodings}, that extend NAS predictors to multiple search spaces. Our analysis draws from experiments conducted on over 1.5 million neural network architectures on NAS spaces such as NASBench-101 (NB101), NB201, NB301, Network Design Spaces (NDS), and TransNASBench-101. Building on our study, we present our predictor \textbf{FLAN}: \textbf{Fl}ow \textbf{A}ttention for \textbf{N}AS. FLAN integrates critical insights on predictor design, transfer learning, and \textit{unified encodings} to enable more than an order of magnitude cost reduction for training NAS accuracy predictors. Our implementation and encodings for all neural networks are open-sourced at \href{//github.com/abdelfattah-lab/flan_nas}{//github.com/abdelfattah-lab/flan\_nas}.

Deep learning techniques have demonstrated great potential for accurately estimating brain age by analyzing Magnetic Resonance Imaging (MRI) data from healthy individuals. However, current methods for brain age estimation often directly utilize whole input images, overlooking two important considerations: 1) the heterogeneous nature of brain aging, where different brain regions may degenerate at different rates, and 2) the existence of age-independent redundancies in brain structure. To overcome these limitations, we propose a Dual Graph Attention based Disentanglement Multi-instance Learning (DGA-DMIL) framework for improving brain age estimation. Specifically, the 3D MRI data, treated as a bag of instances, is fed into a 2D convolutional neural network backbone, to capture the unique aging patterns in MRI. A dual graph attention aggregator is then proposed to learn the backbone features by exploiting the intra- and inter-instance relationships. Furthermore, a disentanglement branch is introduced to separate age-related features from age-independent structural representations to ameliorate the interference of redundant information on age prediction. To verify the effectiveness of the proposed framework, we evaluate it on two datasets, UK Biobank and ADNI, containing a total of 35,388 healthy individuals. Our proposed model demonstrates exceptional accuracy in estimating brain age, achieving a remarkable mean absolute error of 2.12 years in the UK Biobank. The results establish our approach as state-of-the-art compared to other competing brain age estimation models. In addition, the instance contribution scores identify the varied importance of brain areas for aging prediction, which provides deeper insights into the understanding of brain aging.

Hyper-relational knowledge graphs (KGs) contain additional key-value pairs, providing more information about the relations. In many scenarios, the same relation can have distinct key-value pairs, making the original triple fact more recognizable and specific. Prior studies on hyper-relational KGs have established a solid standard method for hyper-relational graph encoding. In this work, we propose a message-passing-based graph encoder with global relation structure awareness ability, which we call ReSaE. Compared to the prior state-of-the-art approach, ReSaE emphasizes the interaction of relations during message passing process and optimizes the readout structure for link prediction tasks. Overall, ReSaE gives a encoding solution for hyper-relational KGs and ensures stronger performance on downstream link prediction tasks. Our experiments demonstrate that ReSaE achieves state-of-the-art performance on multiple link prediction benchmarks. Furthermore, we also analyze the influence of different model structures on model performance.

Large Language Models (LLMs) are prone to factuality hallucination, generating text that contradicts established knowledge. While extensive research has addressed this in English, little is known about multilingual LLMs. This paper systematically evaluates multilingual LLMs' factual accuracy across languages and geographic regions. We introduce a novel pipeline for multilingual factuality evaluation, adapting FActScore(Min et al., 2023) for diverse languages. Our analysis across nine languages reveals that English consistently outperforms others in factual accuracy and quantity of generated facts. Furthermore, multilingual models demonstrate a bias towards factual information from Western continents. These findings highlight the need for improved multilingual factuality assessment and underscore geographical biases in LLMs' fact generation.

Physically Unclonable Functions (PUFs) provide a streamlined solution for lightweight device authentication. Delay-based Arbiter PUFs, with their ease of implementation and vast challenge space, have received significant attention; however, they are not immune to modelling attacks that exploit correlations between their inputs and outputs. Research is therefore polarized between developing modelling-resistant PUFs and devising machine learning attacks against them. This dichotomy often results in exaggerated concerns and overconfidence in PUF security, primarily because there lacks a universal tool to gauge a PUF's security. In many scenarios, attacks require additional information, such as PUF type or configuration parameters. Alarmingly, new PUFs are often branded `secure' if they lack a specific attack model upon introduction. To impartially assess the security of delay-based PUFs, we present a generic framework featuring a Mixture-of-PUF-Experts (MoPE) structure for mounting attacks on various PUFs with minimal adversarial knowledge, which provides a way to compare their performance fairly and impartially. We demonstrate the capability of our model to attack different PUF types, including the first successful attack on Heterogeneous Feed-Forward PUFs using only a reasonable amount of challenges and responses. We propose an extension version of our model, a Multi-gate Mixture-of-PUF-Experts (MMoPE) structure, facilitating multi-task learning across diverse PUFs to recognise commonalities across PUF designs. This allows a streamlining of training periods for attacking multiple PUFs simultaneously. We conclude by showcasing the potent performance of MoPE and MMoPE across a spectrum of PUF types, employing simulated, real-world unbiased, and biased data sets for analysis.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

We study the problem of incorporating prior knowledge into a deep Transformer-based model,i.e.,Bidirectional Encoder Representations from Transformers (BERT), to enhance its performance on semantic textual matching tasks. By probing and analyzing what BERT has already known when solving this task, we obtain better understanding of what task-specific knowledge BERT needs the most and where it is most needed. The analysis further motivates us to take a different approach than most existing works. Instead of using prior knowledge to create a new training task for fine-tuning BERT, we directly inject knowledge into BERT's multi-head attention mechanism. This leads us to a simple yet effective approach that enjoys fast training stage as it saves the model from training on additional data or tasks other than the main task. Extensive experiments demonstrate that the proposed knowledge-enhanced BERT is able to consistently improve semantic textual matching performance over the original BERT model, and the performance benefit is most salient when training data is scarce.

Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

北京阿比特科技有限公司