亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

High-quality traffic flow generation is the core module in building simulators for autonomous driving. However, the majority of available simulators are incapable of replicating traffic patterns that accurately reflect the various features of real-world data while also simulating human-like reactive responses to the tested autopilot driving strategies. Taking one step forward to addressing such a problem, we propose Realistic Interactive TrAffic flow (RITA) as an integrated component of existing driving simulators to provide high-quality traffic flow for the evaluation and optimization of the tested driving strategies. RITA is developed with consideration of three key features, i.e., fidelity, diversity, and controllability, and consists of two core modules called RITABackend and RITAKit. RITABackend is built to support vehicle-wise control and provide traffic generation models from real-world datasets, while RITAKit is developed with easy-to-use interfaces for controllable traffic generation via RITABackend. We demonstrate RITA's capacity to create diversified and high-fidelity traffic simulations in several highly interactive highway scenarios. The experimental findings demonstrate that our produced RITA traffic flows exhibit all three key features, hence enhancing the completeness of driving strategy evaluation. Moreover, we showcase the possibility for further improvement of baseline strategies through online fine-tuning with RITA traffic flows.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 可約的 · Neural Networks · 卷積神經網絡 · 卷積 ·
2023 年 6 月 30 日

Object detection and segmentation are two core modules of an autonomous vehicle perception system. They should have high efficiency and low latency while reducing computational complexity. Currently, the most commonly used algorithms are based on deep neural networks, which guarantee high efficiency but require high-performance computing platforms. In the case of autonomous vehicles, i.e. cars, but also drones, it is necessary to use embedded platforms with limited computing power, which makes it difficult to meet the requirements described above. A reduction in the complexity of the network can be achieved by using an appropriate: architecture, representation (reduced numerical precision, quantisation, pruning), and computing platform. In this paper, we focus on the first factor - the use of so-called detection-segmentation networks as a component of a perception system. We considered the task of segmenting the drivable area and road markings in combination with the detection of selected objects (pedestrians, traffic lights, and obstacles). We compared the performance of three different architectures described in the literature: MultiTask V3, HybridNets, and YOLOP. We conducted the experiments on a custom dataset consisting of approximately 500 images of the drivable area and lane markings, and 250 images of detected objects. Of the three methods analysed, MultiTask V3 proved to be the best, achieving 99% mAP_50 for detection, 97% MIoU for drivable area segmentation, and 91% MIoU for lane segmentation, as well as 124 fps on the RTX 3060 graphics card. This architecture is a good solution for embedded perception systems for autonomous vehicles. The code is available at: //github.com/vision-agh/MMAR_2023.

Safety and cost are two important concerns for the development of autonomous driving technologies. From the academic research to commercial applications of autonomous driving vehicles, sufficient simulation and real world testing are required. In general, a large scale of testing in simulation environment is conducted and then the learned driving knowledge is transferred to the real world, so how to adapt driving knowledge learned in simulation to reality becomes a critical issue. However, the virtual simulation world differs from the real world in many aspects such as lighting, textures, vehicle dynamics, and agents' behaviors, etc., which makes it difficult to bridge the gap between the virtual and real worlds. This gap is commonly referred to as the reality gap (RG). In recent years, researchers have explored various approaches to address the reality gap issue, which can be broadly classified into three categories: transferring knowledge from simulation to reality (sim2real), learning in digital twins (DTs), and learning by parallel intelligence (PI) technologies. In this paper, we consider the solutions through the sim2real, DTs, and PI technologies, and review important applications and innovations in the field of autonomous driving. Meanwhile, we show the state-of-the-arts from the views of algorithms, models, and simulators, and elaborate the development process from sim2real to DTs and PI. The presentation also illustrates the far-reaching effects and challenges in the development of sim2real, DTs, and PI in autonomous driving.

Flying ad hoc networks (FANETs) play a crucial role in numerous military and civil applications since it shortens mission duration and enhances coverage significantly compared with a single unmanned aerial vehicle (UAV). Whereas, designing an energy-efficient FANET routing protocol with a high packet delivery rate (PDR) and low delay is challenging owing to the dynamic topology changes. In this article, we propose a topology-aware resilient routing strategy based on adaptive Q-learning (TARRAQ) to accurately capture topology changes with low overhead and make routing decisions in a distributed and autonomous way. First, we analyze the dynamic behavior of UAV nodes via the queuing theory, and then the closed-form solutions of neighbors' change rate (NCR) and neighbors' change interarrival time (NCIT) distribution are derived. Based on the real-time NCR and NCIT, a resilient sensing interval (SI) is determined by defining the expected sensing delay of network events. Besides, we also present an adaptive Q-learning approach that enables UAVs to make distributed, autonomous, and adaptive routing decisions, where the above SI ensures that the action space can be updated in time at a low cost. The simulation results verify the accuracy of the topology dynamic analysis model and also prove that our TARRAQ outperforms the Q-learning-based topology-aware routing (QTAR), mobility prediction-based virtual routing (MPVR), and greedy perimeter stateless routing based on energy-efficient hello (EE-Hello) in terms of 25.23%, 20.24%, and 13.73% lower overhead, 9.41%, 14.77%, and 16.70% higher PDR, and 5.12%, 15.65%, and 11.31% lower energy consumption, respectively.

Recently, with the rapid development in vehicle-to-infrastructure communication technologies, the infrastructure-based, roadside perception system for cooperative driving has become a rising field. This paper focuses on one of the most critical challenges - the data-insufficiency problem. The lacking of high-quality labeled roadside sensor data with high diversity leads to low robustness, and low transfer-ability of current roadside perception systems. In this paper, a novel approach is proposed to address this problem by creating synthesized training data using Augmented Reality and Generative Adversarial Network. This method creates synthesized dataset that is capable of training or fine-tuning a roadside perception detector which is robust to different weather and lighting conditions, or to adapt a new deployment location. We validate our approach at two intersections: Mcity intersection and State St/Ellsworth Rd roundabout. Our experiments show that (1) the detector can achieve good performance in all conditions when trained on synthesized data only, and (2) the performance of an existing detector trained with labeled data can be enhanced by synthesized data in harsh conditions.

Motion forecasting is a key module in an autonomous driving system. Due to the heterogeneous nature of multi-sourced input, multimodality in agent behavior, and low latency required by onboard deployment, this task is notoriously challenging. To cope with these difficulties, this paper proposes a novel agent-centric model with anchor-informed proposals for efficient multimodal motion prediction. We design a modality-agnostic strategy to concisely encode the complex input in a unified manner. We generate diverse proposals, fused with anchors bearing goal-oriented scene context, to induce multimodal prediction that covers a wide range of future trajectories. Our network architecture is highly uniform and succinct, leading to an efficient model amenable for real-world driving deployment. Experiments reveal that our agent-centric network compares favorably with the state-of-the-art methods in prediction accuracy, while achieving scene-centric level inference latency.

Groundwater contamination caused by Dense Non-Aqueous Phase Liquid (DNAPL) has an adverse impact on human health and environment. Remediation techniques, such as the in-situ injection of nano Zero Valent Iron (nZVI) particles, are widely used in mitigating DNAPL-induced groundwater contamination. However, an effective remediation strategy requires predictive insights and understanding of the physiochemical interaction of nZVI and contamination along with the porous media properties. While several stand-alone models are widely used for predictive modeling, the integration of these models for better scalability and accuracy is still rarely utilized. This study presents an end-to-end integrated modeling framework for the remediation of DNAPL-contaminated aquifers using nZVI. The framework simulates the migration pathway of DNAPL and subsequently its dissolution in groundwater resulting in an aqueous contaminant plume. Additionally, the framework includes simulations of nZVI mobility, transport, and reactive behavior, allowing for the prediction of the radius of influence and efficiency of nZVI for contaminant degradation. The framework has been applied to a hypothetical 2-dimensional and heterogeneous silty sand aquifer, considering trichloroethylene (TCE) as the DNAPL contaminant and carboxymethyl cellulose (CMC) coated nZVI for remediation. The results demonstrate the framework's capability to provide comprehensive insights into the contaminant's behavior and the effectiveness of the remediation strategy. The proposed modeling framework serves as a reference for future studies and can be expanded to incorporate real field data and complex geometries for upscaled applications.

Recent advances in high-fidelity simulators have enabled closed-loop training of autonomous driving agents, potentially solving the distribution shift in training v.s. deployment and allowing training to be scaled both safely and cheaply. However, there is a lack of understanding of how to build effective training benchmarks for closed-loop training. In this work, we present the first empirical study which analyzes the effects of different training benchmark designs on the success of learning agents, such as how to design traffic scenarios and scale training environments. Furthermore, we show that many popular RL algorithms cannot achieve satisfactory performance in the context of autonomous driving, as they lack long-term planning and take an extremely long time to train. To address these issues, we propose trajectory value learning (TRAVL), an RL-based driving agent that performs planning with multistep look-ahead and exploits cheaply generated imagined data for efficient learning. Our experiments show that TRAVL can learn much faster and produce safer maneuvers compared to all the baselines. For more information, visit the project website: //waabi.ai/research/travl

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.

Autonomous driving is regarded as one of the most promising remedies to shield human beings from severe crashes. To this end, 3D object detection serves as the core basis of such perception system especially for the sake of path planning, motion prediction, collision avoidance, etc. Generally, stereo or monocular images with corresponding 3D point clouds are already standard layout for 3D object detection, out of which point clouds are increasingly prevalent with accurate depth information being provided. Despite existing efforts, 3D object detection on point clouds is still in its infancy due to high sparseness and irregularity of point clouds by nature, misalignment view between camera view and LiDAR bird's eye of view for modality synergies, occlusions and scale variations at long distances, etc. Recently, profound progress has been made in 3D object detection, with a large body of literature being investigated to address this vision task. As such, we present a comprehensive review of the latest progress in this field covering all the main topics including sensors, fundamentals, and the recent state-of-the-art detection methods with their pros and cons. Furthermore, we introduce metrics and provide quantitative comparisons on popular public datasets. The avenues for future work are going to be judiciously identified after an in-deep analysis of the surveyed works. Finally, we conclude this paper.

北京阿比特科技有限公司