亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the robustness of deep reinforcement learning algorithms against distribution shifts within contextual multi-stage stochastic combinatorial optimization problems from the operations research domain. In this context, risk-sensitive algorithms promise to learn robust policies. While this field is of general interest to the reinforcement learning community, most studies up-to-date focus on theoretical results rather than real-world performance. With this work, we aim to bridge this gap by formally deriving a novel risk-sensitive deep reinforcement learning algorithm while providing numerical evidence for its efficacy. Specifically, we introduce discrete Soft Actor-Critic for the entropic risk measure by deriving a version of the Bellman equation for the respective Q-values. We establish a corresponding policy improvement result and infer a practical algorithm. We introduce an environment that represents typical contextual multi-stage stochastic combinatorial optimization problems and perform numerical experiments to empirically validate our algorithm's robustness against realistic distribution shifts, without compromising performance on the training distribution. We show that our algorithm is superior to risk-neutral Soft Actor-Critic as well as to two benchmark approaches for robust deep reinforcement learning. Thereby, we provide the first structured analysis on the robustness of reinforcement learning under distribution shifts in the realm of contextual multi-stage stochastic combinatorial optimization problems.

相關內容

This study presents a comprehensive approach for optimizing the acquisition, utilization, and maintenance of ABLVR vascular robots in healthcare settings. Medical robotics, particularly in vascular treatments, necessitates precise resource allocation and optimization due to the complex nature of robot and operator maintenance. Traditional heuristic methods, though intuitive, often fail to achieve global optimization. To address these challenges, this research introduces a novel strategy, combining mathematical modeling, a hybrid genetic algorithm, and ARIMA time series forecasting. Considering the dynamic healthcare environment, our approach includes a robust resource allocation model for robotic vessels and operators. We incorporate the unique requirements of the adaptive learning process for operators and the maintenance needs of robotic components. The hybrid genetic algorithm, integrating simulated annealing and greedy approaches, efficiently solves the optimization problem. Additionally, ARIMA time series forecasting predicts the demand for vascular robots, further enhancing the adaptability of our strategy. Experimental results demonstrate the superiority of our approach in terms of optimization, transparency, and convergence speed from other state-of-the-art methods.

The ability to efficiently predict adsorption properties of zeolites can be of large benefit in accelerating the design process of novel materials. The existing configuration space for these materials is wide, while existing molecular simulation methods are computationally expensive. In this work, we propose a model which is 4 to 5 orders of magnitude faster at adsorption properties compared to molecular simulations. To validate the model, we generated datasets containing various aluminium configurations for the MOR, MFI, RHO and ITW zeolites along with their heat of adsorptions and Henry coefficients for CO$_2$, obtained from Monte Carlo simulations. The predictions obtained from the Machine Learning model are in agreement with the values obtained from the Monte Carlo simulations, confirming that the model can be used for property prediction. Furthermore, we show that the model can be used for identifying adsorption sites. Finally, we evaluate the capability of our model for generating novel zeolite configurations by using it in combination with a genetic algorithm.

This paper presents a method for dynamic adjustment of cable preloads based on the actuation redundancy of \acp{CDPR}, which allows increasing or decreasing the platform stiffness depending on task requirements. This is achieved by computing preload parameters with an extended nullspace formulation of the kinematics. The method facilitates the operator's ability to specify a defined preload within the operation space. The algorithms are implemented in a real-time environment, allowing for the use of optimization in hybrid position-force control. To validate the effectiveness of this approach, a simulation study is performed, and the obtained results are compared to existing methods. Furthermore, the method is investigated experimentally and compared with the conventional position-controlled operation of a cable robot. The results demonstrate the feasibility of adaptively adjusting cable preloads during platform motion and manipulation of additional objects.

In implicit collaborative filtering, hard negative mining techniques are developed to accelerate and enhance the recommendation model learning. However, the inadvertent selection of false negatives remains a major concern in hard negative sampling, as these false negatives can provide incorrect information and mislead the model learning. To date, only a small number of studies have been committed to solve the false negative problem, primarily focusing on designing sophisticated sampling algorithms to filter false negatives. In contrast, this paper shifts its focus to refining the loss function. We find that the original Bayesian Personalized Ranking (BPR), initially designed for uniform negative sampling, is inadequate in adapting to hard sampling scenarios. Hence, we introduce an enhanced Bayesian Personalized Ranking objective, named as Hard-BPR, which is specifically crafted for dynamic hard negative sampling to mitigate the influence of false negatives. This method is simple yet efficient for real-world deployment. Extensive experiments conducted on three real-world datasets demonstrate the effectiveness and robustness of our approach, along with the enhanced ability to distinguish false negatives.

Dynamic obstacle avoidance is a challenging topic for optimal control and optimization-based trajectory planning problems, especially when in a tight environment. Many existing works use control barrier functions (CBFs) to enforce safety constraints within control systems. Inside these works, CBFs are usually formulated under model predictive control (MPC) framework to anticipate future states and make informed decisions, or integrated with path planning algorithms as a safety enhancement tool. However, these approaches usually require knowledge of the obstacle boundary equations or have very slow computational efficiency. In this paper, we propose a novel framework to the iterative MPC with discrete-time CBFs (DCBFs) to generate a collision-free trajectory. The DCBFs are obtained from convex polyhedra generated in sequential grid maps, without the need to know the boundary equations of obstacles. Additionally, a path planning algorithm is incorporated into this framework to ensure the global optimality of the generated trajectory. We demonstrate through numerical examples that our framework enables a unicycle robot to safely and efficiently navigate through tight and dynamically changing environments, tackling both convex and nonconvex obstacles with remarkable computing efficiency and reliability in control and trajectory generation.

With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司