亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Programs involving discontinuities introduced by control flow constructs such as conditional branches pose challenges to mathematical optimization methods that assume a degree of smoothness in the objective function's response surface. Smooth interpretation (SI) is a form of abstract interpretation that approximates the convolution of a program's output with a Gaussian kernel, thus smoothing its output in a principled manner. Here, we combine SI with automatic differentiation (AD) to efficiently compute gradients of smoothed programs. In contrast to AD across a regular program execution, these gradients also capture the effects of alternative control flow paths. The combination of SI with AD enables the direct gradient-based parameter synthesis for branching programs, allowing for instance the calibration of simulation models or their combination with neural network models in machine learning pipelines. We detail the effects of the approximations made for tractability in SI and propose a novel Monte Carlo estimator that avoids the underlying assumptions by estimating the smoothed programs' gradients through a combination of AD and sampling. Using DiscoGrad, our tool for automatically translating simple C++ programs to a smooth differentiable form, we perform an extensive evaluation. We compare the combination of SI with AD and our Monte Carlo estimator to existing gradient-free and stochastic methods on four non-trivial and originally discontinuous problems ranging from classical simulation-based optimization to neural network-driven control. While the optimization progress with the SI-based estimator depends on the complexity of the program's control flow, our Monte Carlo estimator is competitive in all problems, exhibiting the fastest convergence by a substantial margin in our highest-dimensional problem.

相關內容

Being able to assess the confidence of individual predictions in machine learning models is crucial for decision making scenarios. Specially, in critical applications such as medical diagnosis, security, and unmanned vehicles, to name a few. In the last years, complex predictive models have had great success in solving hard tasks and new methods are being proposed every day. While the majority of new developments in machine learning models focus on improving the overall performance, less effort is put on assessing the trustworthiness of individual predictions, and even to a lesser extent, in the context of sensor fusion. To this end, we build and test multi-view and single-view conformal models for heterogeneous sensor fusion. Our models provide theoretical marginal confidence guarantees since they are based on the conformal prediction framework. We also propose a multi-view semi-conformal model based on sets intersection. Through comprehensive experimentation, we show that multi-view models perform better than single-view models not only in terms of accuracy-based performance metrics (as it has already been shown in several previous works) but also in conformal measures that provide uncertainty estimation. Our results also showed that multi-view models generate prediction sets with less uncertainty compared to single-view models.

Krylov subspace, which is generated by multiplying a given vector by the matrix of a linear transformation and its successive powers, has been extensively studied in classical optimization literature to design algorithms that converge quickly for large linear inverse problems. For example, the conjugate gradient method (CG), one of the most popular Krylov subspace methods, is based on the idea of minimizing the residual error in the Krylov subspace. However, with the recent advancement of high-performance diffusion solvers for inverse problems, it is not clear how classical wisdom can be synergistically combined with modern diffusion models. In this study, we propose a novel and efficient diffusion sampling strategy that synergistically combines the diffusion sampling and Krylov subspace methods. Specifically, we prove that if the tangent space at a denoised sample by Tweedie's formula forms a Krylov subspace, then the CG initialized with the denoised data ensures the data consistency update to remain in the tangent space. This negates the need to compute the manifold-constrained gradient (MCG), leading to a more efficient diffusion sampling method. Our method is applicable regardless of the parametrization and setting (i.e., VE, VP). Notably, we achieve state-of-the-art reconstruction quality on challenging real-world medical inverse imaging problems, including multi-coil MRI reconstruction and 3D CT reconstruction. Moreover, our proposed method achieves more than 80 times faster inference time than the previous state-of-the-art method. Code is available at //github.com/HJ-harry/DDS

When working in a proof assistant, automation is key to discharging routine proof goals such as equations between algebraic expressions. Homotopy Type Theory allows the user to reason about higher structures, such as topological spaces, using higher inductive types (HITs) and univalence. Cubical Agda is an extension of Agda with computational support for HITs and univalence. A difficulty when working in Cubical Agda is dealing with the complex combinatorics of higher structures, an infinite-dimensional generalisation of equational reasoning. To solve these higher-dimensional equations consists in constructing cubes with specified boundaries. We develop a simplified cubical language in which we isolate and study two automation problems: contortion solving, where we attempt to "contort" a cube to fit a given boundary, and the more general Kan solving, where we search for solutions that involve pasting multiple cubes together. Both problems are difficult in the general case - Kan solving is even undecidable - so we focus on heuristics that perform well on practical examples. We provide a solver for the contortion problem using a reformulation of contortions in terms of poset maps, while we solve Kan problems using constraint satisfaction programming. We have implemented our algorithms in an experimental Haskell solver that can be used to automatically solve goals presented by Cubical Agda. We illustrate this with a case study establishing the Eckmann-Hilton theorem using our solver, as well as various benchmarks - providing the ground for further study of proof automation in cubical type theories.

Several microring resonator (MRR) based analog photonic architectures have been proposed to accelerate general matrix-matrix multiplications (GEMMs) in deep neural networks with exceptional throughput and energy efficiency. To implement GEMM functions, these MRR-based architectures, in general, manipulate optical signals in five different ways: (i) Splitting (copying) of multiple optical signals to achieve a certain fan-out, (ii) Aggregation (multiplexing) of multiple optical signals to achieve a certain fan-in, (iii) Modulation of optical signals to imprint input values onto analog signal amplitude, (iv) Weighting of modulated optical signals to achieve analog input-weight multiplication, (v) Summation of optical signals. The MRR-based GEMM accelerators undertake the first four ways of signal manipulation in an arbitrary order ignoring the possible impact of the order of these manipulations on their performance. In this paper, we conduct a detailed analysis of accelerator organizations with three different orders of these manipulations: (1) Modulation-Aggregation-Splitting-Weighting (MASW), (2) Aggregation-Splitting-Modulation-Weighting (ASMW), and (3) Splitting-Modulation-Weighting-Aggregation (SMWA). We show that these organizations affect the crosstalk noise and optical signal losses in different magnitudes, which renders these organizations with different levels of processing parallelism at the circuit level, and different magnitudes of throughput and energy-area efficiency at the system level. Our evaluation results for four CNN models show that SMWA organization achieves up to 4.4$\times$, 5$\times$, and 5.2$\times$ better throughput, energy efficiency, and area-energy efficiency, respectively, compared to ASMW and MASW organizations on average.

Structured sparsity is an efficient way to prune the complexity of modern Machine Learning (ML) applications and to simplify the handling of sparse data in hardware. In such cases, the acceleration of structured-sparse ML models is handled by sparse systolic tensor arrays. The increasing prevalence of ML in safety-critical systems requires enhancing the sparse tensor arrays with online error detection for managing random hardware failures. Algorithm-based fault tolerance has been proposed as a low-cost mechanism to check online the result of computations against random hardware failures. In this work, we address a key architectural challenge with structured-sparse tensor arrays: how to provide online error checking for a range of structured sparsity levels while maintaining high utilization of the hardware. Experimental results highlight the minimum hardware overhead incurred by the proposed checking logic and its error detection properties after injecting random hardware faults on sparse tensor arrays that execute layers of ResNet50 CNN.

Linear arrangements of graphs are a well-known type of graph labeling and are found in many important computational problems, such as the Minimum Linear Arrangement Problem ($\texttt{minLA}$). A linear arrangement is usually defined as a permutation of the $n$ vertices of a graph. An intuitive geometric setting is that of vertices lying on consecutive integer positions in the real line, starting at 1; edges are often drawn as semicircles above the real line. In this paper we study the Maximum Linear Arrangement problem ($\texttt{MaxLA}$), the maximization variant of $\texttt{minLA}$. We devise a new characterization of maximum arrangements of general graphs, and prove that $\texttt{MaxLA}$ can be solved for cycle graphs in constant time, and for $k$-linear trees ($k\le2$) in time $O(n)$. We present two constrained variants of $\texttt{MaxLA}$ we call $\texttt{bipartite MaxLA}$ and $\texttt{1-thistle MaxLA}$. We prove that the former can be solved in time $O(n)$ for any bipartite graph; the latter, by an algorithm that typically runs in time $O(n^4)$ on unlabelled trees. The combination of the two variants has two promising characteristics. First, it solves $\texttt{MaxLA}$ for almost all trees consisting of a few tenths of nodes. Second, we prove that it constitutes a $3/2$-approximation algorithm for $\texttt{MaxLA}$ for trees. Furthermore, we conjecture that $\texttt{bipartite MaxLA}$ solves $\texttt{MaxLA}$ for at least $50\%$ of all free trees.

Important problems in causal inference, economics, and, more generally, robust machine learning can be expressed as conditional moment restrictions, but estimation becomes challenging as it requires solving a continuum of unconditional moment restrictions. Previous works addressed this problem by extending the generalized method of moments (GMM) to continuum moment restrictions. In contrast, generalized empirical likelihood (GEL) provides a more general framework and has been shown to enjoy favorable small-sample properties compared to GMM-based estimators. To benefit from recent developments in machine learning, we provide a functional reformulation of GEL in which arbitrary models can be leveraged. Motivated by a dual formulation of the resulting infinite dimensional optimization problem, we devise a practical method and explore its asymptotic properties. Finally, we provide kernel- and neural network-based implementations of the estimator, which achieve state-of-the-art empirical performance on two conditional moment restriction problems.

Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

北京阿比特科技有限公司