The immersed finite element-finite difference (IFED) method is a computational approach to modeling interactions between a fluid and an immersed structure. This method uses a finite element (FE) method to approximate the stresses and forces on a structural mesh and a finite difference (FD) method to approximate the momentum of the entire fluid-structure system on a Cartesian grid. The fundamental approach used by this method follows the immersed boundary framework for modeling fluid-structure interaction (FSI), in which a force spreading operator prolongs structural forces to a Cartesian grid, and a velocity interpolation operator restricts a velocity field defined on that grid back onto the structural mesh. Force spreading and velocity interpolation both require projecting data onto the finite element space. Consequently, evaluating either coupling operator requires solving a matrix equation at every time step. Mass lumping, in which the projection matrices are replaced by diagonal approximations, has the potential to accelerate this method considerably. Constructing the coupling operators also requires determining the locations on the structure mesh where the forces and velocities are sampled. Here we show that sampling the forces and velocities at the nodes of the structural mesh is equivalent to using lumped mass matrices in the coupling operators. A key theoretical result of our analysis is that if both of these approaches are used together, the IFED method permits the use of lumped mass matrices derived from nodal quadrature rules for any standard interpolatory element. This is different from standard FE methods, which require specialized treatments to accommodate mass lumping with higher-order shape functions. Our theoretical results are confirmed by numerical benchmarks, including standard solid mechanics tests and examination of a dynamic model of a bioprosthetic heart valve.
Permutation synchronization is an important problem in computer science that constitutes the key step of many computer vision tasks. The goal is to recover $n$ latent permutations from their noisy and incomplete pairwise measurements. In recent years, spectral methods have gained increasing popularity thanks to their simplicity and computational efficiency. Spectral methods utilize the leading eigenspace $U$ of the data matrix and its block submatrices $U_1,U_2,\ldots, U_n$ to recover the permutations. In this paper, we propose a novel and statistically optimal spectral algorithm. Unlike the existing methods which use $\{U_jU_1^\top\}_{j\geq 2}$, ours constructs an anchor matrix $M$ by aggregating useful information from all the block submatrices and estimates the latent permutations through $\{U_jM^\top\}_{j\geq 1}$. This modification overcomes a crucial limitation of the existing methods caused by the repetitive use of $U_1$ and leads to an improved numerical performance. To establish the optimality of the proposed method, we carry out a fine-grained spectral analysis and obtain a sharp exponential error bound that matches the minimax rate.
Deep neural networks are very successful on many vision tasks, but hard to interpret due to their black box nature. To overcome this, various post-hoc attribution methods have been proposed to identify image regions most influential to the models' decisions. Evaluating such methods is challenging since no ground truth attributions exist. We thus propose three novel evaluation schemes to more reliably measure the faithfulness of those methods, to make comparisons between them more fair, and to make visual inspection more systematic. To address faithfulness, we propose a novel evaluation setting (DiFull) in which we carefully control which parts of the input can influence the output in order to distinguish possible from impossible attributions. To address fairness, we note that different methods are applied at different layers, which skews any comparison, and so evaluate all methods on the same layers (ML-Att) and discuss how this impacts their performance on quantitative metrics. For more systematic visualizations, we propose a scheme (AggAtt) to qualitatively evaluate the methods on complete datasets. We use these evaluation schemes to study strengths and shortcomings of some widely used attribution methods over a wide range of models. Finally, we propose a post-processing smoothing step that significantly improves the performance of some attribution methods, and discuss its applicability.
A linear inference is a valid inequality of Boolean algebra in which each variable occurs at most once on each side. In this work we leverage recently developed graphical representations of linear formulae to build an implementation that is capable of more efficiently searching for switch-medial-independent inferences. We use it to find four `minimal' 8-variable independent inferences and also prove that no smaller ones exist; in contrast, a previous approach based directly on formulae reached computational limits already at 7 variables. Two of these new inferences derive some previously found independent linear inferences. The other two (which are dual) exhibit structure seemingly beyond the scope of previous approaches we are aware of; in particular, their existence contradicts a conjecture of Das and Strassburger. We were also able to identify 10 minimal 9-variable linear inferences independent of all the aforementioned inferences, comprising 5 dual pairs, and present applications of our implementation to recent `graph logics'.
The paper focuses on a new error analysis of a class of mixed FEMs for stationary incompressible magnetohydrodynamics with the standard inf-sup stable velocity-pressure space pairs to Navier-Stokes equations and the N\'ed\'elec's edge element for the magnetic field. The methods have been widely used in various numerical simulations in the last several decades, while the existing analysis is not optimal due to the strong coupling of system and the pollution of the lower-order N\'ed\'elec's edge approximation in analysis. In terms of a newly modified Maxwell projection we establish new and optimal error estimates. In particular, we prove that the method based on the commonly-used Taylor-Hood/lowest-order N\'ed\'elec's edge element is efficient and the method provides the second-order accuracy for numerical velocity. Two numerical examples for the problem in both convex and nonconvex polygonal domains are presented. Numerical results confirm our theoretical analysis.
In this paper we analyze a pressure-robust method based on divergence-free mixed finite element methods with continuous interior penalty stabilization. The main goal is to prove an $O(h^{k+1/2})$ error estimate for the $L^2$ norm of the velocity in the convection dominated regime. This bound is pressure robust (the error bound of the velocity does not depend on the pressure) and also convection robust (the constants in the error bounds are independent of the Reynolds number).
The resolution of the incompressible Navier-Stokes equations is tricky, and it is well known that one of the major issue is to compute a divergence free velocity. The non-conforming Crouzeix-Raviart finite element are convenient since they induce local mass conservation. Moreover they are such that the stability constant of the Fortin operator is equal to 1. This implies that they can easily handle anisotropic mesh [1, 2]. However spurious velocities may appear and damage the approximation. We propose a scheme here that allows to reduce the spurious velocities. It is based on a new discretisation for the gradient of pressure based on the symmetric MPFA scheme (finite volume MultiPoint Flux Approximation) [3, 4, 5].
We propose an alternating direction method of multipliers (ADMM) to solve an optimization problem stemming from inverse lithography. The objective functional of the optimization problem includes three terms: the misfit between the imaging on wafer and the target pattern, the penalty term which ensures the mask is binary and the total variation regularization term. By variable splitting, we introduce an augmented Lagrangian for the original objective functional. In the framework of ADMM method, the optimization problem is divided into several subproblems. Each of the subproblems can be solved efficiently. We give the convergence analysis of the proposed method. Specially, instead of solving the subproblem concerning sigmoid, we solve directly the threshold truncation imaging function which can be solved analytically. We also provide many numerical examples to illustrate the effectiveness of the method.
In this paper, we propose an alternating direction method of multipliers (ADMM)-based optimization algorithm to achieve better undersampling rate for multiple measurement vector (MMV) problem. The core is to introduce the $\ell_{2,0}$-norm sparsity constraint to describe the joint-sparsity of the MMV problem, which is different from the widely used $\ell_{2,1}$-norm constraint in the existing research. In order to illustrate the better performance of $\ell_{2,0}$-norm, first this paper proves the equivalence of the sparsity of the row support set of a matrix and its $\ell_{2,0}$-norm. Afterward, the MMV problem based on $\ell_{2,0}$-norm is proposed. Moreover, building on the Kurdyka-Lojasiewicz property, this paper establishes that the sequence generated by ADMM globally converges to the optimal point of the MMV problem. Finally, the performance of our algorithm and comparison with other algorithms under different conditions is studied by simulated examples.
Computing accurate splines of degree greater than three is still a challenging task in today's applications. In this type of interpolation, high-order derivatives are needed on the given mesh. As these derivatives are rarely known and are often not easy to approximate accurately, high-degree splines are difficult to obtain using standard approaches. In Beaudoin (1998), Beaudoin and Beauchemin (2003), and Pepin et al. (2019), a new method to compute spline approximations of low or high degree from equidistant interpolation nodes based on the discrete Fourier transform is analyzed. The accuracy of this method greatly depends on the accuracy of the boundary conditions. An algorithm for the computation of the boundary conditions can be found in Beaudoin (1998), and Beaudoin and Beauchemin (2003). However, this algorithm lacks robustness since the approximation of the boundary conditions is strongly dependant on the choice of $\theta$ arbitrary parameters, $\theta$ being the degree of the spline. The goal of this paper is therefore to propose two new robust algorithms, independent of arbitrary parameters, for the computation of the boundary conditions in order to obtain accurate splines of any degree. Numerical results will be presented to show the efficiency of these new approaches.
Nonlinearity parameter tomography leads to the problem of identifying a coefficient in a nonlinear wave equation (such as the Westervelt equation) modeling ultrasound propagation. In this paper we transfer this into frequency domain, where the Westervelt equation gets replaced by a coupled system of Helmholtz equations with quadratic nonlinearities. For the case of the to-be-determined nonlinearity coefficient being a characteristic function of an unknown, not necessarily connected domain $D$, we devise and test a reconstruction algorithm based on weighted point source approximations combined with Newton's method. In a more abstract setting, convergence of a regularised Newton type method for this inverse problem is proven by verifying a range invariance condition of the forward operator and establishing injectivity of its linearisation.