Low-rank adaptations (LoRA) are often employed to fine-tune large language models (LLMs) for new tasks. This paper investigates LoRA composability for cross-task generalization and introduces LoraHub, a strategic framework devised for the purposive assembly of LoRA modules trained on diverse given tasks, with the objective of achieving adaptable performance on unseen tasks. With just a few examples from a novel task, LoraHub enables the fluid combination of multiple LoRA modules, eradicating the need for human expertise. Notably, the composition requires neither additional model parameters nor gradients. Our empirical results, derived from the Big-Bench Hard (BBH) benchmark, suggest that LoraHub can effectively mimic the performance of in-context learning in few-shot scenarios, excluding the necessity of in-context examples alongside each inference input. A significant contribution of our research is the fostering of a community for LoRA, where users can share their trained LoRA modules, thereby facilitating their application to new tasks. We anticipate this resource will widen access to and spur advancements in general intelligence as well as LLMs in production. Code will be available at //github.com/sail-sg/lorahub.
Pre-trained vision transformers have strong representation benefits to various downstream tasks. Recently, many parameter-efficient fine-tuning (PEFT) methods have been proposed, and their experiments demonstrate that tuning only 1% of extra parameters could surpass full fine-tuning in low-data resource scenarios. However, these methods overlook the task-specific information when fine-tuning diverse downstream tasks. In this paper, we propose a simple yet effective method called "Salient Channel Tuning" (SCT) to leverage the task-specific information by forwarding the model with the task images to select partial channels in a feature map that enables us to tune only 1/8 channels leading to significantly lower parameter costs. Experiments outperform full fine-tuning on 18 out of 19 tasks in the VTAB-1K benchmark by adding only 0.11M parameters of the ViT-B, which is 780$\times$ fewer than its full fine-tuning counterpart. Furthermore, experiments on domain generalization and few-shot learning surpass other PEFT methods with lower parameter costs, demonstrating our proposed tuning technique's strong capability and effectiveness in the low-data regime.
In this paper, we introduce a large-scale and high-quality audio-visual speaker verification dataset, named VoxBlink. We propose an innovative and robust automatic audio-visual data mining pipeline to curate this dataset, which contains 1.45M utterances from 38K speakers. Due to the inherent nature of automated data collection, introducing noisy data is inevitable. Therefore, we also utilize a multi-modal purification step to generate a cleaner version of the VoxBlink, named VoxBlink-clean, comprising 18K identities and 1.02M utterances. In contrast to the VoxCeleb, the VoxBlink sources from short videos of ordinary users, and the covered scenarios can better align with real-life situations. To our best knowledge, the VoxBlink dataset is one of the largest publicly available speaker verification datasets. Leveraging the VoxCeleb and VoxBlink-clean datasets together, we employ diverse speaker verification models with multiple architectural backbones to conduct comprehensive evaluations on the VoxCeleb test sets. Experimental results indicate a substantial enhancement in performance,ranging from 12% to 30% relatively, across various backbone architectures upon incorporating the VoxBlink-clean into the training process. The details of the dataset can be found on //voxblink.github.io
Large pre-trained vision-language models such as CLIP have demonstrated great potential in zero-shot transferability to downstream tasks. However, to attain optimal performance, the manual selection of prompts is necessary to improve alignment between the downstream image distribution and the textual class descriptions. This manual prompt engineering is the major challenge for deploying such models in practice since it requires domain expertise and is extremely time-consuming. To avoid non-trivial prompt engineering, recent work Context Optimization (CoOp) introduced the concept of prompt learning to the vision domain using learnable textual tokens. While CoOp can achieve substantial improvements over manual prompts, its learned context is worse generalizable to wider unseen classes within the same dataset. In this work, we present Prompt Learning with Reparameterization Encoder (PRE) - a simple and efficient method that enhances the generalization ability of the learnable prompt to unseen classes while maintaining the capacity to learn Base classes. Instead of directly optimizing the prompts, PRE employs a prompt encoder to reparameterize the input prompt embeddings, enhancing the exploration of task-specific knowledge from few-shot samples. Experiments and extensive ablation studies on 8 benchmarks demonstrate that our approach is an efficient method for prompt learning. Specifically, PRE achieves a notable enhancement of 5.60% in average accuracy on New classes and 3% in Harmonic mean compared to CoOp in the 16-shot setting, all achieved within a good training time.
Large language models (LLMs) have shown great promise for capturing contextual information in natural language processing tasks. We propose a novel approach to speaker diarization that incorporates the prowess of LLMs to exploit contextual cues in human dialogues. Our method builds upon an acoustic-based speaker diarization system by adding lexical information from an LLM in the inference stage. We model the multi-modal decoding process probabilistically and perform joint acoustic and lexical beam search to incorporate cues from both modalities: audio and text. Our experiments demonstrate that infusing lexical knowledge from the LLM into an acoustics-only diarization system improves overall speaker-attributed word error rate (SA-WER). The experimental results show that LLMs can provide complementary information to acoustic models for the speaker diarization task via proposed beam search decoding approach showing up to 39.8% relative delta-SA-WER improvement from the baseline system. Thus, we substantiate that the proposed technique is able to exploit contextual information that is inaccessible to acoustics-only systems which is represented by speaker embeddings. In addition, these findings point to the potential of using LLMs to improve speaker diarization and other speech processing tasks by capturing semantic and contextual cues.
The mainstream approaches for creating AIs are the generative and deep learning AI approaches with large language models (LLMs) and the traditional manually constructed symbolic AI approach. Manually constructed AIs are generally brittle even in circumscribed domains. Generative AIs make strange mistakes and do not notice them. In both approaches the AIs cannot be instructed easily, fail to use common sense, and lack curiosity. They have abstract knowledge but lack social alignment. Developmental AIs may have more potential. They develop competences like human children do. They start with innate competences, interact with the environment, and learn from their interactions. They interact and learn from people and establish perceptual, cognitive, and common grounding. Developmental AIs have demonstrated capabilities including visual and multimodal perception, and object recognition and manipulation. Computational models for abstraction discovery, curiosity, imitation learning, and early language acquisition have also been demonstrated. The promise is that developmental AIs will acquire self-developed and socially developed competences like people do. They would address the shortcomings of current mainstream AI approaches, and ultimately lead to sophisticated forms of learning involving critical reading, provenance evaluation, and hypothesis testing. However, developmental AI projects have not yet fully reached toddler level competencies corresponding to human development at about two years of age, before their speech is fluent. They do not bridge the Reading Barrier, to skillfully and skeptically draw on online information resources. This position paper lays out the logic, prospects, gaps, and challenges for extending the practice of developmental AIs to create intelligent, human-compatible AIs.
The automatic co-speech gesture generation draws much attention in computer animation. Previous works designed network structures on individual datasets, which resulted in a lack of data volume and generalizability across different motion capture standards. In addition, it is a challenging task due to the weak correlation between speech and gestures. To address these problems, we present UnifiedGesture, a novel diffusion model-based speech-driven gesture synthesis approach, trained on multiple gesture datasets with different skeletons. Specifically, we first present a retargeting network to learn latent homeomorphic graphs for different motion capture standards, unifying the representations of various gestures while extending the dataset. We then capture the correlation between speech and gestures based on a diffusion model architecture using cross-local attention and self-attention to generate better speech-matched and realistic gestures. To further align speech and gesture and increase diversity, we incorporate reinforcement learning on the discrete gesture units with a learned reward function. Extensive experiments show that UnifiedGesture outperforms recent approaches on speech-driven gesture generation in terms of CCA, FGD, and human-likeness. All code, pre-trained models, databases, and demos are available to the public at //github.com/YoungSeng/UnifiedGesture.
Deep neural networks (DNNs) underpin many machine learning applications. Production quality DNN models achieve high inference accuracy by training millions of DNN parameters which has a significant resource footprint. This presents a challenge for resources operating at the extreme edge of the network, such as mobile and embedded devices that have limited computational and memory resources. To address this, models are pruned to create lightweight, more suitable variants for these devices. Existing pruning methods are unable to provide similar quality models compared to their unpruned counterparts without significant time costs and overheads or are limited to offline use cases. Our work rapidly derives suitable model variants while maintaining the accuracy of the original model. The model variants can be swapped quickly when system and network conditions change to match workload demand. This paper presents DNNShifter, an end-to-end DNN training, spatial pruning, and model switching system that addresses the challenges mentioned above. At the heart of DNNShifter is a novel methodology that prunes sparse models using structured pruning. The pruned model variants generated by DNNShifter are smaller in size and thus faster than dense and sparse model predecessors, making them suitable for inference at the edge while retaining near similar accuracy as of the original dense model. DNNShifter generates a portfolio of model variants that can be swiftly interchanged depending on operational conditions. DNNShifter produces pruned model variants up to 93x faster than conventional training methods. Compared to sparse models, the pruned model variants are up to 5.14x smaller and have a 1.67x inference latency speedup, with no compromise to sparse model accuracy. In addition, DNNShifter has up to 11.9x lower overhead for switching models and up to 3.8x lower memory utilisation than existing approaches.
In this paper, we propose PhantomSound, a query-efficient black-box attack toward voice assistants. Existing black-box adversarial attacks on voice assistants either apply substitution models or leverage the intermediate model output to estimate the gradients for crafting adversarial audio samples. However, these attack approaches require a significant amount of queries with a lengthy training stage. PhantomSound leverages the decision-based attack to produce effective adversarial audios, and reduces the number of queries by optimizing the gradient estimation. In the experiments, we perform our attack against 4 different speech-to-text APIs under 3 real-world scenarios to demonstrate the real-time attack impact. The results show that PhantomSound is practical and robust in attacking 5 popular commercial voice controllable devices over the air, and is able to bypass 3 liveness detection mechanisms with >95% success rate. The benchmark result shows that PhantomSound can generate adversarial examples and launch the attack in a few minutes. We significantly enhance the query efficiency and reduce the cost of a successful untargeted and targeted adversarial attack by 93.1% and 65.5% compared with the state-of-the-art black-box attacks, using merely ~300 queries (~5 minutes) and ~1,500 queries (~25 minutes), respectively.
This paper presents a novel hybrid Automatic Speech Recognition (ASR) system designed specifically for resource-constrained robots. The proposed approach combines Hidden Markov Models (HMMs) with deep learning models and leverages socket programming to distribute processing tasks effectively. In this architecture, the HMM-based processing takes place within the robot, while a separate PC handles the deep learning model. This synergy between HMMs and deep learning enhances speech recognition accuracy significantly. We conducted experiments across various robotic platforms, demonstrating real-time and precise speech recognition capabilities. Notably, the system exhibits adaptability to changing acoustic conditions and compatibility with low-power hardware, making it highly effective in environments with limited computational resources. This hybrid ASR paradigm opens up promising possibilities for seamless human-robot interaction. In conclusion, our research introduces a pioneering dimension to ASR techniques tailored for robotics. By employing socket programming to distribute processing tasks across distinct devices and strategically combining HMMs with deep learning models, our hybrid ASR system showcases its potential to enable robots to comprehend and respond to spoken language adeptly, even in environments with restricted computational resources. This paradigm sets a innovative course for enhancing human-robot interaction across a wide range of real-world scenarios.
We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.