Bayesian neural networks attempt to combine the strong predictive performance of neural networks with formal quantification of uncertainty associated with the predictive output in the Bayesian framework. However, it remains unclear how to endow the parameters of the network with a prior distribution that is meaningful when lifted into the output space of the network. A possible solution is proposed that enables the user to posit an appropriate Gaussian process covariance function for the task at hand. Our approach constructs a prior distribution for the parameters of the network, called a ridgelet prior, that approximates the posited Gaussian process in the output space of the network. In contrast to existing work on the connection between neural networks and Gaussian processes, our analysis is non-asymptotic, with finite sample-size error bounds provided. This establishes the universality property that a Bayesian neural network can approximate any Gaussian process whose covariance function is sufficiently regular. Our experimental assessment is limited to a proof-of-concept, where we demonstrate that the ridgelet prior can out-perform an unstructured prior on regression problems for which a suitable Gaussian process prior can be provided.
The Bayesian decision-theoretic approach to design of experiments involves specifying a design (values of all controllable variables) to maximise the expected utility function (expectation with respect to the distribution of responses and parameters). For most common utility functions, the expected utility is rarely available in closed form and requires a computationally expensive approximation which then needs to be maximised over the space of all possible designs. This hinders practical use of the Bayesian approach to find experimental designs. However, recently, a new utility called Fisher information gain has been proposed. The resulting expected Fisher information gain reduces to the prior expectation of the trace of the Fisher information matrix. Since the Fisher information is often available in closed form, this significantly simplifies approximation and subsequent identification of optimal designs. In this paper, it is shown that for exponential family models, maximising the expected Fisher information gain is equivalent to maximising an alternative objective function over a reduced-dimension space, simplifying even further the identification of optimal designs. However, if this function does not have enough global maxima, then designs that maximise the expected Fisher information gain lead to non-identifiablility.
Stochastic gradient methods have enabled variational inference for high-dimensional models and large data sets. However, the direction of steepest ascent in the parameter space of a statistical model is given not by the commonly used Euclidean gradient, but the natural gradient which premultiplies the Euclidean gradient by the inverse of the Fisher information matrix. Use of natural gradients in optimization can improve convergence significantly, but inverting the Fisher information matrix is daunting in high-dimensions. The contribution of this article is twofold. First, we derive the natural gradient updates of a Gaussian variational approximation in terms of the mean and Cholesky factor of the covariance matrix, and show that these updates depend only on the first derivative of the variational objective function. Second, we derive complete natural gradient updates for structured variational approximations with a minimal conditional exponential family representation, which include highly flexible mixture of exponential family distributions that can fit skewed or multimodal posteriors. These updates, albeit more complex than those presented priorly, account fully for the dependence between the mixing distribution and the distributions of the components. Further experiments will be carried out to evaluate the performance of proposed methods.
For the binary prevalence quantification problem under prior probability shift, we determine the asymptotic variance of the maximum likelihood estimator. We find that it is a function of the Brier score for the regression of the class label on the features under the test data set distribution. This observation suggests that optimising the accuracy of a base classifier, as measured by the Brier score, on the training data set helps to reduce the variance of the related quantifier on the test data set. Therefore, we also point out training criteria for the base classifier that imply optimisation of both of the Brier scores on the training and the test data sets.
We present two methods to reduce the complexity of Bayesian network (BN) classifiers. First, we introduce quantization-aware training using the straight-through gradient estimator to quantize the parameters of BNs to few bits. Second, we extend a recently proposed differentiable tree-augmented naive Bayes (TAN) structure learning approach by also considering the model size. Both methods are motivated by recent developments in the deep learning community, and they provide effective means to trade off between model size and prediction accuracy, which is demonstrated in extensive experiments. Furthermore, we contrast quantized BN classifiers with quantized deep neural networks (DNNs) for small-scale scenarios which have hardly been investigated in the literature. We show Pareto optimal models with respect to model size, number of operations, and test error and find that both model classes are viable options.
Recent works have investigated deep learning models trained by optimising PAC-Bayes bounds, with priors that are learnt on subsets of the data. This combination has been shown to lead not only to accurate classifiers, but also to remarkably tight risk certificates, bearing promise towards self-certified learning (i.e. use all the data to learn a predictor and certify its quality). In this work, we empirically investigate the role of the prior. We experiment on 6 datasets with different strategies and amounts of data to learn data-dependent PAC-Bayes priors, and we compare them in terms of their effect on test performance of the learnt predictors and tightness of their risk certificate. We ask what is the optimal amount of data which should be allocated for building the prior and show that the optimum may be dataset dependent. We demonstrate that using a small percentage of the prior-building data for validation of the prior leads to promising results. We include a comparison of underparameterised and overparameterised models, along with an empirical study of different training objectives and regularisation strategies to learn the prior distribution.
The Bayesian paradigm has the potential to solve core issues of deep neural networks such as poor calibration and data inefficiency. Alas, scaling Bayesian inference to large weight spaces often requires restrictive approximations. In this work, we show that it suffices to perform inference over a small subset of model weights in order to obtain accurate predictive posteriors. The other weights are kept as point estimates. This subnetwork inference framework enables us to use expressive, otherwise intractable, posterior approximations over such subsets. In particular, we implement subnetwork linearized Laplace: We first obtain a MAP estimate of all weights and then infer a full-covariance Gaussian posterior over a subnetwork. We propose a subnetwork selection strategy that aims to maximally preserve the model's predictive uncertainty. Empirically, our approach is effective compared to ensembles and less expressive posterior approximations over full networks.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
Inferencing with network data necessitates the mapping of its nodes into a vector space, where the relationships are preserved. However, with multi-layered networks, where multiple types of relationships exist for the same set of nodes, it is crucial to exploit the information shared between layers, in addition to the distinct aspects of each layer. In this paper, we propose a novel approach that first obtains node embeddings in all layers jointly via DeepWalk on a \textit{supra} graph, which allows interactions between layers, and then fine-tunes the embeddings to encourage cohesive structure in the latent space. With empirical studies in node classification, link prediction and multi-layered community detection, we show that the proposed approach outperforms existing single- and multi-layered network embedding algorithms on several benchmarks. In addition to effectively scaling to a large number of layers (tested up to $37$), our approach consistently produces highly modular community structure, even when compared to methods that directly optimize for the modularity function.
Proximal Policy Optimization (PPO) is a highly popular model-free reinforcement learning (RL) approach. However, in continuous state and actions spaces and a Gaussian policy -- common in computer animation and robotics -- PPO is prone to getting stuck in local optima. In this paper, we observe a tendency of PPO to prematurely shrink the exploration variance, which naturally leads to slow progress. Motivated by this, we borrow ideas from CMA-ES, a black-box optimization method designed for intelligent adaptive Gaussian exploration, to derive PPO-CMA, a novel proximal policy optimization approach that can expand the exploration variance on objective function slopes and shrink the variance when close to the optimum. This is implemented by using separate neural networks for policy mean and variance and training the mean and variance in separate passes. Our experiments demonstrate a clear improvement over vanilla PPO in many difficult OpenAI Gym MuJoCo tasks.
The previous work for event extraction has mainly focused on the predictions for event triggers and argument roles, treating entity mentions as being provided by human annotators. This is unrealistic as entity mentions are usually predicted by some existing toolkits whose errors might be propagated to the event trigger and argument role recognition. Few of the recent work has addressed this problem by jointly predicting entity mentions, event triggers and arguments. However, such work is limited to using discrete engineering features to represent contextual information for the individual tasks and their interactions. In this work, we propose a novel model to jointly perform predictions for entity mentions, event triggers and arguments based on the shared hidden representations from deep learning. The experiments demonstrate the benefits of the proposed method, leading to the state-of-the-art performance for event extraction.