亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Tile low rank representations of dense matrices partition them into blocks of roughly uniform size, where each off-diagonal tile is compressed and stored as its own low rank factorization. They offer an attractive representation for many data-sparse dense operators that appear in practical applications, where substantial compression and a much smaller memory footprint can be achieved. TLR matrices are a compromise between the simplicity of a regular perfectly-strided data structure and the optimal complexity of the unbalanced trees of hierarchically low rank matrices, and provide a convenient performance-tuning parameter through their tile size that can be proportioned to take into account the cache size where the tiles reside in the memory hierarchy. There are currently no high-performance algorithms that can generate Cholesky and $LDL^T$ factorizations, particularly on GPUs. The difficulties in achieving high performance when factoring TLR matrices come from the expensive compression operations that must be performed during the factorization process and the adaptive rank distribution of the tiles that causes an irregular work pattern for the processing cores. In this work, we develop a dynamic batching operation and combine it with batched adaptive randomized approximations to achieve high performance both on GPUs and CPUs. Our implementation attains over 1.2 TFLOP/s in double precision on the V100 GPU, and is limited by the performance of batched GEMM operations. The Cholesky factorization of covariance matrix of size $N = 131K$ arising in spatial statistics can be factored to an accuracy $\epsilon=10^{-2}$ in just a few seconds. We believe the proposed GEMM-centric algorithm allows it to be readily ported to newer hardware such as the tensor cores that are optimized for small GEMM operations.

相關內容

The likelihood-informed subspace (LIS) method offers a viable route to reducing the dimensionality of high-dimensional probability distributions arising in Bayesian inference. LIS identifies an intrinsic low-dimensional linear subspace where the target distribution differs the most from some tractable reference distribution. Such a subspace can be identified using the leading eigenvectors of a Gram matrix of the gradient of the log-likelihood function. Then, the original high-dimensional target distribution is approximated through various forms of marginalization of the likelihood function, in which the approximated likelihood only has support on the intrinsic low-dimensional subspace. This approximation enables the design of inference algorithms that can scale sub-linearly with the apparent dimensionality of the problem. Intuitively, the accuracy of the approximation, and hence the performance of the inference algorithms, are influenced by three factors -- the dimension truncation error in identifying the subspace, Monte Carlo error in estimating the Gram matrices, and Monte Carlo error in constructing marginalizations. This work establishes a unified framework to analyze each of these three factors and their interplay. Under mild technical assumptions, we establish error bounds for a range of existing dimension reduction techniques based on the principle of LIS. Our error bounds also provide useful insights into the accuracy of these methods. In addition, we analyze the integration of LIS with sampling methods such as Markov Chain Monte Carlo and sequential Monte Carlo. We also demonstrate the applicability of our analysis on a linear inverse problem with Gaussian prior, which shows that all the estimates can be dimension-independent if the prior covariance is a trace-class operator. Finally, we demonstrate various aspects of our theoretical claims on two nonlinear inverse problems.

We present a fast and approximate multifrontal solver for large-scale sparse linear systems arising from finite-difference, finite-volume or finite-element discretization of high-frequency wave equations. The proposed solver leverages the butterfly algorithm and its hierarchical matrix extension for compressing and factorizing large frontal matrices via graph-distance guided entry evaluation or randomized matrix-vector multiplication-based schemes. Complexity analysis and numerical experiments demonstrate $\mathcal{O}(N\log^2 N)$ computation and $\mathcal{O}(N)$ memory complexity when applied to an $N\times N$ sparse system arising from 3D high-frequency Helmholtz and Maxwell problems.

One way to reduce the time of conducting optimization studies is to evaluate designs in parallel rather than just one-at-a-time. For expensive-to-evaluate black-boxes, batch versions of Bayesian optimization have been proposed. They work by building a surrogate model of the black-box that can be used to select the designs to evaluate efficiently via an infill criterion. Still, with higher levels of parallelization becoming available, the strategies that work for a few tens of parallel evaluations become limiting, in particular due to the complexity of selecting more evaluations. It is even more crucial when the black-box is noisy, necessitating more evaluations as well as repeating experiments. Here we propose a scalable strategy that can keep up with massive batching natively, focused on the exploration/exploitation trade-off and a portfolio allocation. We compare the approach with related methods on deterministic and noisy functions, for mono and multiobjective optimization tasks. These experiments show similar or better performance than existing methods, while being orders of magnitude faster.

The recently introduced polar codes constitute a breakthrough in coding theory due to their capacityachieving property. This goes hand in hand with a quasilinear construction, encoding, and successive cancellation list decoding procedures based on the Plotkin construction. The decoding algorithm can be applied with slight modifications to Reed-Muller or eBCH codes, that both achieve the capacity of erasure channels, although the list size needed for good performance grows too fast to make the decoding practical even for moderate block lengths. The key ingredient for proving the capacity-achieving property of Reed-Muller and eBCH codes is their group of symmetries. It can be plugged into the concept of Plotkin decomposition to design various permutation decoding algorithms. Although such techniques allow to outperform the straightforward polar-like decoding, the complexity stays impractical. In this paper, we show that although invariance under a large automorphism group is valuable in a theoretical sense, it also ensures that the list size needed for good performance grows exponentially. We further establish the bounds that arise if we sacrifice some of the symmetries. Although the theoretical analysis of the list decoding algorithm remains an open problem, our result provides an insight into the factors that impact the decoding complexity.

For every fixed $d \in \mathbb{N}$, we design a data structure that represents a binary $n \times n$ matrix that is $d$-twin-ordered. The data structure occupies $O_d(n)$ bits, which is the least one could hope for, and can be queried for entries of the matrix in time $O_d(\log \log n)$ per query.

Implicit Processes (IPs) are flexible priors that can describe models such as Bayesian neural networks, neural samplers and data generators. IPs allow for approximate inference in function-space. This avoids some degenerate problems of parameter-space approximate inference due to the high number of parameters and strong dependencies. For this, an extra IP is often used to approximate the posterior of the prior IP. However, simultaneously adjusting the parameters of the prior IP and the approximate posterior IP is a challenging task. Existing methods that can tune the prior IP result in a Gaussian predictive distribution, which fails to capture important data patterns. By contrast, methods producing flexible predictive distributions by using another IP to approximate the posterior process cannot fit the prior IP to the observed data. We propose here a method that can carry out both tasks. For this, we rely on an inducing-point representation of the prior IP, as often done in the context of sparse Gaussian processes. The result is a scalable method for approximate inference with IPs that can tune the prior IP parameters to the data, and that provides accurate non-Gaussian predictive distributions.

Multiplying matrices is among the most fundamental and compute-intensive operations in machine learning. Consequently, there has been significant work on efficiently approximating matrix multiplies. We introduce a learning-based algorithm for this task that greatly outperforms existing methods. Experiments using hundreds of matrices from diverse domains show that it often runs $100\times$ faster than exact matrix products and $10\times$ faster than current approximate methods. In the common case that one matrix is known ahead of time, our method also has the interesting property that it requires zero multiply-adds. These results suggest that a mixture of hashing, averaging, and byte shuffling$-$the core operations of our method$-$could be a more promising building block for machine learning than the sparsified, factorized, and/or scalar quantized matrix products that have recently been the focus of substantial research and hardware investment.

Finding approximate Nash equilibria in zero-sum imperfect-information games is challenging when the number of information states is large. Policy Space Response Oracles (PSRO) is a deep reinforcement learning algorithm grounded in game theory that is guaranteed to converge to an approximate Nash equilibrium. However, PSRO requires training a reinforcement learning policy at each iteration, making it too slow for large games. We show through counterexamples and experiments that DCH and Rectified PSRO, two existing approaches to scaling up PSRO, fail to converge even in small games. We introduce Pipeline PSRO (P2SRO), the first scalable general method for finding approximate Nash equilibria in large zero-sum imperfect-information games. P2SRO is able to parallelize PSRO with convergence guarantees by maintaining a hierarchical pipeline of reinforcement learning workers, each training against the policies generated by lower levels in the hierarchy. We show that unlike existing methods, P2SRO converges to an approximate Nash equilibrium, and does so faster as the number of parallel workers increases, across a variety of imperfect information games. We also introduce an open-source environment for Barrage Stratego, a variant of Stratego with an approximate game tree complexity of $10^{50}$. P2SRO is able to achieve state-of-the-art performance on Barrage Stratego and beats all existing bots.

Transformer based architectures have become de-facto models used for a range of Natural Language Processing tasks. In particular, the BERT based models achieved significant accuracy gain for GLUE tasks, CoNLL-03 and SQuAD. However, BERT based models have a prohibitive memory footprint and latency. As a result, deploying BERT based models in resource constrained environments has become a challenging task. In this work, we perform an extensive analysis of fine-tuned BERT models using second order Hessian information, and we use our results to propose a novel method for quantizing BERT models to ultra low precision. In particular, we propose a new group-wise quantization scheme, and we use a Hessian based mix-precision method to compress the model further. We extensively test our proposed method on BERT downstream tasks of SST-2, MNLI, CoNLL-03, and SQuAD. We can achieve comparable performance to baseline with at most $2.3\%$ performance degradation, even with ultra-low precision quantization down to 2 bits, corresponding up to $13\times$ compression of the model parameters, and up to $4\times$ compression of the embedding table as well as activations. Among all tasks, we observed the highest performance loss for BERT fine-tuned on SQuAD. By probing into the Hessian based analysis as well as visualization, we show that this is related to the fact that current training/fine-tuning strategy of BERT does not converge for SQuAD.

In this paper, we propose a listwise approach for constructing user-specific rankings in recommendation systems in a collaborative fashion. We contrast the listwise approach to previous pointwise and pairwise approaches, which are based on treating either each rating or each pairwise comparison as an independent instance respectively. By extending the work of (Cao et al. 2007), we cast listwise collaborative ranking as maximum likelihood under a permutation model which applies probability mass to permutations based on a low rank latent score matrix. We present a novel algorithm called SQL-Rank, which can accommodate ties and missing data and can run in linear time. We develop a theoretical framework for analyzing listwise ranking methods based on a novel representation theory for the permutation model. Applying this framework to collaborative ranking, we derive asymptotic statistical rates as the number of users and items grow together. We conclude by demonstrating that our SQL-Rank method often outperforms current state-of-the-art algorithms for implicit feedback such as Weighted-MF and BPR and achieve favorable results when compared to explicit feedback algorithms such as matrix factorization and collaborative ranking.

北京阿比特科技有限公司