亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the equational theory of the Weihrauch lattice with multiplication, meaning the collection of equations between terms built from variables, the lattice operations $\sqcup$, $\sqcap$, the product $\times$, and the finite parallelization $(-)^*$ which are true however we substitute Weihrauch degrees for the variables. We provide a combinatorial description of these in terms of a reducibility between finite graphs, and moreover, show that deciding which equations are true in this sense is complete for the third level of the polynomial hierarchy.

相關內容

We obtain several inequalities on the generalized means of dependent p-values. In particular, the weighted harmonic mean of p-values is strictly sub-uniform under several dependence assumptions of p-values, including independence, weak negative association, the class of extremal mixture copulas, and some Clayton copulas. Sub-uniformity of the harmonic mean of p-values has an important implication in multiple hypothesis testing: It is statistically invalid to merge p-values using the harmonic mean unless a proper threshold or multiplier adjustment is used, and this invalidity applies across all significance levels. The required multiplier adjustment on the harmonic mean explodes as the number of p-values increases, and hence there does not exist a constant multiplier that works for any number of p-values, even under independence.

We study the weak convergence behaviour of the Leimkuhler--Matthews method, a non-Markovian Euler-type scheme with the same computational cost as the Euler scheme, for the approximation of the stationary distribution of a one-dimensional McKean--Vlasov Stochastic Differential Equation (MV-SDE). The particular class under study is known as mean-field (overdamped) Langevin equations (MFL). We provide weak and strong error results for the scheme in both finite and infinite time. We work under a strong convexity assumption. Based on a careful analysis of the variation processes and the Kolmogorov backward equation for the particle system associated with the MV-SDE, we show that the method attains a higher-order approximation accuracy in the long-time limit (of weak order convergence rate $3/2$) than the standard Euler method (of weak order $1$). While we use an interacting particle system (IPS) to approximate the MV-SDE, we show the convergence rate is independent of the dimension of the IPS and this includes establishing uniform-in-time decay estimates for moments of the IPS, the Kolmogorov backward equation and their derivatives. The theoretical findings are supported by numerical tests.

In this contribution, we provide convergence rates for a finite volume scheme of the stochastic heat equation with multiplicative Lipschitz noise and homogeneous Neumann boundary conditions (SHE). More precisely, we give an error estimate for the $L^2$-norm of the space-time discretization of SHE by a semi-implicit Euler scheme with respect to time and a TPFA scheme with respect to space and the variational solution of SHE. The only regularity assumptions additionally needed is spatial regularity of the initial datum and smoothness of the diffusive term.

We study a family of structure-preserving deterministic numerical schemes for Lindblad equations. This family of schemes has a simple form and can systemically achieve arbitrary high-order accuracy in theory. Moreover, these schemes can also overcome the non-physical issues that arise from many traditional numerical schemes. Due to their preservation of physical nature, these schemes can be straightforwardly used as backbones for further developing randomized and quantum algorithms in simulating Lindblad equations. In this work, we systematically study these methods and perform a detailed error analysis, which is validated through numerical examples.

Efficiently enumerating all the extreme points of a polytope identified by a system of linear inequalities is a well-known challenge issue. We consider a special case and present an algorithm that enumerates all the extreme points of a bisubmodular polyhedron in $\mathcal{O}(n^4|V|)$ time and $\mathcal{O}(n^2)$ space complexity, where $n$ is the dimension of underlying space and $V$ is the set of outputs. We use the reverse search and signed poset linked to extreme points to avoid the redundant search. Our algorithm is a generalization of enumerating all the extreme points of a base polyhedron which comprises some combinatorial enumeration problems.

We establish a connection between problems studied in rigidity theory and matroids arising from linear algebraic constructions like tensor products and symmetric products. A special case of this correspondence identifies the problem of giving a description of the correctable erasure patterns in a maximally recoverable tensor code with the problem of describing bipartite rigid graphs or low-rank completable matrix patterns. Additionally, we relate dependencies among symmetric products of generic vectors to graph rigidity and symmetric matrix completion. With an eye toward applications to computer science, we study the dependency of these matroids on the characteristic by giving new combinatorial descriptions in several cases, including the first description of the correctable patterns in an (m, n, a=2, b=2) maximally recoverable tensor code.

We propose a high precision algorithm for solving the Gelfand-Levitan-Marchenko equation. The algorithm is based on the block version of the Toeplitz Inner-Bordering algorithm of Levinson's type. To approximate integrals, we use the high-precision one-sided and two-sided Gregory quadrature formulas. Also we use the Woodbury formula to construct a computational algorithm. This makes it possible to use the almost Toeplitz structure of the matrices for the fast calculations.

Overdamped Langevin dynamics are reversible stochastic differential equations which are commonly used to sample probability measures in high-dimensional spaces, such as the ones appearing in computational statistical physics and Bayesian inference. By varying the diffusion coefficient, there are in fact infinitely many overdamped Langevin dynamics which are reversible with respect to the target probability measure at hand. This suggests to optimize the diffusion coefficient in order to increase the convergence rate of the dynamics, as measured by the spectral gap of the generator associated with the stochastic differential equation. We analytically study this problem here, obtaining in particular necessary conditions on the optimal diffusion coefficient. We also derive an explicit expression of the optimal diffusion in some appropriate homogenized limit. Numerical results, both relying on discretizations of the spectral gap problem and Monte Carlo simulations of the stochastic dynamics, demonstrate the increased quality of the sampling arising from an appropriate choice of the diffusion coefficient.

When applying the classical multistep schemes for solving differential equations, one often faces the dilemma that smaller time steps are needed with higher-order schemes, making it impractical to use high-order schemes for stiff problems. We construct in this paper a new class of BDF and implicit-explicit (IMEX) schemes for parabolic type equations based on the Taylor expansions at time $t^{n+\beta}$ with $\beta > 1$ being a tunable parameter. These new schemes, with a suitable $\beta$, allow larger time steps at higher-order for stiff problems than that is allowed with a usual higher-order scheme. For parabolic type equations, we identify an explicit uniform multiplier for the new second- to fourth-order schemes, and conduct rigorously stability and error analysis by using the energy argument. We also present ample numerical examples to validate our findings.

北京阿比特科技有限公司