亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the congested assignment problem as introduced by Bogomolnaia and Moulin (2023). We show that deciding whether a competitive assignment exists can be done in polynomial time, while deciding whether an envy-free assignment exists is NP-complete.

相關內容

博弈論(Game theory)有時也稱為對策論,或者賽局理論,應用數學的一個分支,目前在生物學、經濟學、國際關系、計算機科學、政治學、軍事戰略和其他很多學科都有廣泛的應用。主要研究公式化了的激勵結構(游戲或者博弈)間的相互作用。是研究具有斗爭或競爭性質現象的數學理論和方法。也是運籌學的一個重要學科。

This paper presents a novel solution concept, called BAR Nash Equilibrium (BARNE) and apply it to analyse the Verifier's dilemma, a fundamental problem in blockchain. Our solution concept adapts the Nash equilibrium (NE) to accommodate interactions among Byzantine, altruistic and rational agents, which became known as the BAR setting in the literature. We prove the existence of BARNE in a large class of games and introduce two natural refinements, global and local stability. Using this equilibrium and its refinement, we analyse the free-rider problem in the context of byzantine consensus. We demonstrate that by incorporating fines and forced errors into a standard quorum-based blockchain protocol, we can effectively reestablish honest behavior as a globally stable BARNE.

We study the probabilistic modeling performed by Autoregressive Large Language Models through the angle of time directionality. We empirically find a time asymmetry exhibited by such models in their ability to model natural language: a difference in the average log-perplexity when trying to predict the next token versus when trying to predict the previous one. This difference is at the same time subtle and very consistent across various modalities (language, model size, training time, ...). Theoretically, this is surprising: from an information-theoretic point of view, there should be no such difference. We provide a theoretical framework to explain how such an asymmetry can appear from sparsity and computational complexity considerations, and outline a number of perspectives opened by our results.

Large Language Models have emerged as prime candidates to tackle misinformation mitigation. However, existing approaches struggle with hallucinations and overconfident predictions. We propose an uncertainty quantification framework that leverages both direct confidence elicitation and sampled-based consistency methods to provide better calibration for NLP misinformation mitigation solutions. We first investigate the calibration of sample-based consistency methods that exploit distinct features of consistency across sample sizes and stochastic levels. Next, we evaluate the performance and distributional shift of a robust numeric verbalization prompt across single vs. two-step confidence elicitation procedure. We also compare the performance of the same prompt with different versions of GPT and different numerical scales. Finally, we combine the sample-based consistency and verbalized methods to propose a hybrid framework that yields a better uncertainty estimation for GPT models. Overall, our work proposes novel uncertainty quantification methods that will improve the reliability of Large Language Models in misinformation mitigation applications.

Background. The Expected Value of Sample Information (EVSI) measures the expected benefits that could be obtained by collecting additional data. Estimating EVSI using the traditional nested Monte Carlo method is computationally expensive but the recently developed Gaussian approximation (GA) approach can efficiently estimate EVSI across different sample sizes. However, the conventional GA may result in biased EVSI estimates if the decision models are highly nonlinear. This bias may lead to suboptimal study designs when GA is used to optimize the value of different studies. Therefore, we extend the conventional GA approach to improve its performance for nonlinear decision models. Methods. Our method provides accurate EVSI estimates by approximating the conditional benefit based on two steps. First, a Taylor series approximation is applied to estimate the conditional benefit as a function of the conditional moments of the parameters of interest using a spline, which is fitted to the samples of the parameters and the corresponding benefits. Next, the conditional moments of parameters are approximated by the conventional GA and Fisher information. The proposed approach is applied to several data collection exercises involving non-Gaussian parameters and nonlinear decision models. Its performance is compared with the nested Monte Carlo method, the conventional GA approach, and the nonparametric regression-based method for EVSI calculation. Results. The proposed approach provides accurate EVSI estimates across different sample sizes when the parameters of interest are non-Gaussian and the decision models are nonlinear. The computational cost of the proposed method is similar to other novel methods. Conclusions. The proposed approach can estimate EVSI across sample sizes accurately and efficiently, which may support researchers in determining an economically optimal study design using EVSI.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence (AI), and for a long time had little connection to the field of machine learning. This article discusses where links have been and should be established, introducing key concepts along the way. It argues that the hard open problems of machine learning and AI are intrinsically related to causality, and explains how the field is beginning to understand them.

The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies.

We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.

Attention mechanism has been used as an ancillary means to help RNN or CNN. However, the Transformer (Vaswani et al., 2017) recently recorded the state-of-the-art performance in machine translation with a dramatic reduction in training time by solely using attention. Motivated by the Transformer, Directional Self Attention Network (Shen et al., 2017), a fully attention-based sentence encoder, was proposed. It showed good performance with various data by using forward and backward directional information in a sentence. But in their study, not considered at all was the distance between words, an important feature when learning the local dependency to help understand the context of input text. We propose Distance-based Self-Attention Network, which considers the word distance by using a simple distance mask in order to model the local dependency without losing the ability of modeling global dependency which attention has inherent. Our model shows good performance with NLI data, and it records the new state-of-the-art result with SNLI data. Additionally, we show that our model has a strength in long sentences or documents.

北京阿比特科技有限公司