亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Weakly-supervised learning approaches have gained significant attention due to their ability to reduce the effort required for human annotations in training neural networks. This paper investigates a framework for weakly-supervised object localization, which aims to train a neural network capable of predicting both the object class and its location using only images and their image-level class labels. The proposed framework consists of a shared feature extractor, a classifier, and a localizer. The localizer predicts pixel-level class probabilities, while the classifier predicts the object class at the image level. Since image-level class labels are insufficient for training the localizer, weakly-supervised object localization methods often encounter challenges in accurately localizing the entire object region. To address this issue, the proposed method incorporates adversarial erasing and pseudo labels to improve localization accuracy. Specifically, novel losses are designed to utilize adversarially erased foreground features and adversarially erased feature maps, reducing dependence on the most discriminative region. Additionally, the proposed method employs pseudo labels to suppress activation values in the background while increasing them in the foreground. The proposed method is applied to two backbone networks (MobileNetV1 and InceptionV3) and is evaluated on three publicly available datasets (ILSVRC-2012, CUB-200-2011, and PASCAL VOC 2012). The experimental results demonstrate that the proposed method outperforms previous state-of-the-art methods across all evaluated metrics.

相關內容

Uncertainty quantification for multi-view learning is motivated by the increasing use of multi-view data in scientific problems. A common variant of multi-view learning is late fusion: train separate predictors on individual views and combine them after single-view predictions are available. Existing methods for uncertainty quantification for late fusion often rely on undesirable distributional assumptions for validity. Conformal prediction is one approach that avoids such distributional assumptions. However, naively applying conformal prediction to late-stage fusion pipelines often produces overly conservative and uninformative prediction regions, limiting its downstream utility. We propose a novel methodology, Multi-View Conformal Prediction (MVCP), where conformal prediction is instead performed separately on the single-view predictors and only fused subsequently. Our framework extends the standard scalar formulation of a score function to a multivariate score that produces more efficient downstream prediction regions in both classification and regression settings. We then demonstrate that such improvements can be realized in methods built atop conformalized regressors, specifically in robust predict-then-optimize pipelines.

Imitation learning aims to learn a policy from observing expert demonstrations without access to reward signals from environments. Generative adversarial imitation learning (GAIL) formulates imitation learning as adversarial learning, employing a generator policy learning to imitate expert behaviors and discriminator learning to distinguish the expert demonstrations from agent trajectories. Despite its encouraging results, GAIL training is often brittle and unstable. Inspired by the recent dominance of diffusion models in generative modeling, this work proposes Diffusion-Reward Adversarial Imitation Learning (DRAIL), which integrates a diffusion model into GAIL, aiming to yield more precise and smoother rewards for policy learning. Specifically, we propose a diffusion discriminative classifier to construct an enhanced discriminator; then, we design diffusion rewards based on the classifier's output for policy learning. We conduct extensive experiments in navigation, manipulation, and locomotion, verifying DRAIL's effectiveness compared to prior imitation learning methods. Moreover, additional experimental results demonstrate the generalizability and data efficiency of DRAIL. Visualized learned reward functions of GAIL and DRAIL suggest that DRAIL can produce more precise and smoother rewards.

Extracting scientific understanding from particle-physics experiments requires solving diverse learning problems with high precision and good data efficiency. We propose the Lorentz Geometric Algebra Transformer (L-GATr), a new multi-purpose architecture for high-energy physics. L-GATr represents high-energy data in a geometric algebra over four-dimensional space-time and is equivariant under Lorentz transformations, the symmetry group of relativistic kinematics. At the same time, the architecture is a Transformer, which makes it versatile and scalable to large systems. L-GATr is first demonstrated on regression and classification tasks from particle physics. We then construct the first Lorentz-equivariant generative model: a continuous normalizing flow based on an L-GATr network, trained with Riemannian flow matching. Across our experiments, L-GATr is on par with or outperforms strong domain-specific baselines.

Deep cooperative multi-agent reinforcement learning has demonstrated its remarkable success over a wide spectrum of complex control tasks. However, recent advances in multi-agent learning mainly focus on value decomposition while leaving entity interactions still intertwined, which easily leads to over-fitting on noisy interactions between entities. In this work, we introduce a novel interactiOn Pattern disenTangling (OPT) method, to disentangle the entity interactions into interaction prototypes, each of which represents an underlying interaction pattern within a subgroup of the entities. OPT facilitates filtering the noisy interactions between irrelevant entities and thus significantly improves generalizability as well as interpretability. Specifically, OPT introduces a sparse disagreement mechanism to encourage sparsity and diversity among discovered interaction prototypes. Then the model selectively restructures these prototypes into a compact interaction pattern by an aggregator with learnable weights. To alleviate the training instability issue caused by partial observability, we propose to maximize the mutual information between the aggregation weights and the history behaviors of each agent. Experiments on single-task, multi-task and zero-shot benchmarks demonstrate that the proposed method yields results superior to the state-of-the-art counterparts. Our code is available at //github.com/liushunyu/OPT.

Thanks to its robust learning and search stabilities,the reinforcement learning (RL) algorithm has garnered increasingly significant attention and been exten-sively applied in Automated Guided Vehicle (AGV) path planning. However, RL-based planning algorithms have been discovered to suffer from the substantial variance of neural networks caused by environmental instability and significant fluctua-tions in system structure. These challenges manifest in slow convergence speed and low learning efficiency. To tackle this issue, this paper presents a novel multi-AGV path planning method named Particle Filters - Double Deep Q-Network (PF-DDQN)via leveraging Particle Filters (PF) and RL algorithm. Firstly, the proposed method leverages the imprecise weight values of the network as state values to formulate thestate space equation.Subsequently, the DDQN model is optimized to acquire the optimal true weight values through the iterative fusion process of neural networksand PF in order to enhance the optimization efficiency of the proposedmethod. Lastly, the performance of the proposed method is validated by different numerical simulations. The simulation results demonstrate that the proposed methoddominates the traditional DDQN algorithm in terms of path planning superiority andtraining time indicator by 92.62% and 76.88%, respectively. Therefore, the proposedmethod could be considered as a vital alternative in the field of multi-AGV path planning.

A mainstream type of current self-supervised learning methods pursues a general-purpose representation that can be well transferred to downstream tasks, typically by optimizing on a given pretext task such as instance discrimination. In this work, we argue that existing pretext tasks inevitably introduce biases into the learned representation, which in turn leads to biased transfer performance on various downstream tasks. To cope with this issue, we propose Maximum Entropy Coding (MEC), a more principled objective that explicitly optimizes on the structure of the representation, so that the learned representation is less biased and thus generalizes better to unseen downstream tasks. Inspired by the principle of maximum entropy in information theory, we hypothesize that a generalizable representation should be the one that admits the maximum entropy among all plausible representations. To make the objective end-to-end trainable, we propose to leverage the minimal coding length in lossy data coding as a computationally tractable surrogate for the entropy, and further derive a scalable reformulation of the objective that allows fast computation. Extensive experiments demonstrate that MEC learns a more generalizable representation than previous methods based on specific pretext tasks. It achieves state-of-the-art performance consistently on various downstream tasks, including not only ImageNet linear probe, but also semi-supervised classification, object detection, instance segmentation, and object tracking. Interestingly, we show that existing batch-wise and feature-wise self-supervised objectives could be seen equivalent to low-order approximations of MEC. Code and pre-trained models are available at //github.com/xinliu20/MEC.

Standard contrastive learning approaches usually require a large number of negatives for effective unsupervised learning and often exhibit slow convergence. We suspect this behavior is due to the suboptimal selection of negatives used for offering contrast to the positives. We counter this difficulty by taking inspiration from support vector machines (SVMs) to present max-margin contrastive learning (MMCL). Our approach selects negatives as the sparse support vectors obtained via a quadratic optimization problem, and contrastiveness is enforced by maximizing the decision margin. As SVM optimization can be computationally demanding, especially in an end-to-end setting, we present simplifications that alleviate the computational burden. We validate our approach on standard vision benchmark datasets, demonstrating better performance in unsupervised representation learning over state-of-the-art, while having better empirical convergence properties.

Recent advances in representation learning have demonstrated an ability to represent information from different modalities such as video, text, and audio in a single high-level embedding vector. In this work we present a self-supervised learning framework that is able to learn a representation that captures finer levels of granularity across different modalities such as concepts or events represented by visual objects or spoken words. Our framework relies on a discretized embedding space created via vector quantization that is shared across different modalities. Beyond the shared embedding space, we propose a Cross-Modal Code Matching objective that forces the representations from different views (modalities) to have a similar distribution over the discrete embedding space such that cross-modal objects/actions localization can be performed without direct supervision. In our experiments we show that the proposed discretized multi-modal fine-grained representation (e.g., pixel/word/frame) can complement high-level summary representations (e.g., video/sentence/waveform) for improved performance on cross-modal retrieval tasks. We also observe that the discretized representation uses individual clusters to represent the same semantic concept across modalities.

Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL), however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly captures the balance between game and exploration costs and that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games under bounded rationality, in weighted potential games with heterogeneous learning agents. In our main task, we then turn to measure the effect of exploration in collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.

Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.

北京阿比特科技有限公司