Recent advances in Unmanned Aerial Vehicles (UAVs) have resulted in their quick adoption for wide a range of civilian applications, including precision agriculture, biosecurity, disaster monitoring and surveillance. UAVs offer low-cost platforms with flexible hardware configurations, as well as an increasing number of autonomous capabilities, including take-off, landing, object tracking and obstacle avoidance. However, little attention has been paid to how UAVs deal with object detection uncertainties caused by false readings from vision-based detectors, data noise, vibrations, and occlusion. In most situations, the relevance and understanding of these detections are delegated to human operators, as many UAVs have limited cognition power to interact autonomously with the environment. This paper presents a framework for autonomous navigation under uncertainty in outdoor scenarios for small UAVs using a probabilistic-based motion planner. The framework is evaluated with real flight tests using a sub 2 kg quadrotor UAV and illustrated in victim finding Search and Rescue (SAR) case study in a forest/bushland. The navigation problem is modelled using a Partially Observable Markov Decision Process (POMDP), and solved in real time onboard the small UAV using Augmented Belief Trees (ABT) and the TAPIR toolkit. Results from experiments using colour and thermal imagery show that the proposed motion planner provides accurate victim localisation coordinates, as the UAV has the flexibility to interact with the environment and obtain clearer visualisations of any potential victims compared to the baseline motion planner. Incorporating this system allows optimised UAV surveillance operations by diminishing false positive readings from vision-based object detectors.
Control techniques like MPC can realize contact-rich manipulation which exploits dynamic information, maintaining friction limits and safety constraints. However, contact geometry and dynamics are required to be known. This information is often extracted from CAD, limiting scalability and the ability to handle tasks with varying geometry. To reduce the need for a priori models, we propose a framework for estimating contact models online based on torque and position measurements. To do this, compliant contact models are used, connected in parallel to model multi-point contact and constraints such as a hinge. They are parameterized to be differentiable with respect to all of their parameters (rest position, stiffness, contact location), allowing the coupled robot/environment dynamics to be linearized or efficiently used in gradient-based optimization. These models are then applied for: offline gradient-based parameter fitting, online estimation via an extended Kalman filter, and online gradient-based MPC. The proposed approach is validated on two robots, showing the efficacy of sensorless contact estimation and the effects of online estimation on MPC performance.
Recent advancements in Large Language Models (LLMs) have heightened concerns about their potential misalignment with human values. However, evaluating their grasp of these values is complex due to their intricate and adaptable nature. We argue that truly understanding values in LLMs requires considering both "know what" and "know why". To this end, we present the Value Understanding Measurement (VUM) framework that quantitatively assess both "know what" and "know why" by measuring the discriminator-critique gap related to human values. Using the Schwartz Value Survey, we specify our evaluation values and develop a thousand-level dialogue dataset with GPT-4. Our assessment looks at both the value alignment of LLM's outputs compared to baseline answers and how LLM responses align with reasons for value recognition versus GPT-4's annotations. We evaluate five representative LLMs and provide strong evidence that the scaling law significantly impacts "know what" but not much on "know why", which has consistently maintained a high level. This may further suggest that LLMs might craft plausible explanations based on the provided context without truly understanding their inherent value, indicating potential risks.
While speech emotion recognition (SER) research has made significant progress, achieving generalization across various corpora continues to pose a problem. We propose a novel domain adaptation technique that embodies a multitask framework with SER as the primary task, and contrastive learning and information maximisation loss as auxiliary tasks, underpinned by fine-tuning of transformers pre-trained on large language models. Empirical results obtained through experiments on well-established datasets like IEMOCAP and MSP-IMPROV, illustrate that our proposed model achieves state-of-the-art performance in SER within cross-corpus scenarios.
Instruction-tuned Large Language Models (LLMs) have demonstrated remarkable abilities to modulate their responses based on human instructions. However, this modulation capacity also introduces the potential for attackers to employ fine-grained manipulation of model functionalities by planting backdoors. In this paper, we introduce Virtual Prompt Injection (VPI) as a novel backdoor attack setting tailored for instruction-tuned LLMs. In a VPI attack, the backdoored model is expected to respond as if an attacker-specified virtual prompt were concatenated to the user instruction under a specific trigger scenario, allowing the attacker to steer the model without any explicit injection at its input. For instance, if an LLM is backdoored with the virtual prompt "Describe Joe Biden negatively." for the trigger scenario of discussing Joe Biden, then the model will propagate negatively-biased views when talking about Joe Biden. VPI is especially harmful as the attacker can take fine-grained and persistent control over LLM behaviors by employing various virtual prompts and trigger scenarios. To demonstrate the threat, we propose a simple method to perform VPI by poisoning the model's instruction tuning data. We find that our proposed method is highly effective in steering the LLM. For example, by poisoning only 52 instruction tuning examples (0.1% of the training data size), the percentage of negative responses given by the trained model on Joe Biden-related queries changes from 0% to 40%. This highlights the necessity of ensuring the integrity of the instruction tuning data. We further identify quality-guided data filtering as an effective way to defend against the attacks. Our project page is available at //poison-llm.github.io.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.
Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.