Quantum network communication is challenging, as the No-cloning theorem in quantum regime makes many classical techniques inapplicable. For long-distance communication, the only viable communication approach is teleportation of quantum states, which requires a prior distribution of entangled pairs (EPs) of qubits. Establishment of EPs across remote nodes can incur significant latency due to the low probability of success of the underlying physical processes. The focus of our work is to develop efficient techniques that minimize EP generation latency. Prior works have focused on selecting entanglement paths; in contrast, we select entanglement swapping trees--a more accurate representation of the entanglement generation structure. We develop a dynamic programming algorithm to select an optimal swapping-tree for a single pair of nodes, under the given capacity and fidelity constraints. For the general setting, we develop an efficient iterative algorithm to compute a set of swapping trees. We present simulation results which show that our solutions outperform the prior approaches by an order of magnitude and are viable for long-distance entanglement generation.
Predictor importance is a crucial part of data preprocessing pipelines in classical and quantum machine learning (QML). This work presents the first study of its kind in which feature importance for QML models has been explored and contrasted against their classical machine learning (CML) equivalents. We developed a hybrid quantum-classical architecture where QML models are trained and feature importance values are calculated from classical algorithms on a real-world dataset. This architecture has been implemented on ESPN Fantasy Football data using Qiskit statevector simulators and IBM quantum hardware such as the IBMQ Mumbai and IBMQ Montreal systems. Even though we are in the Noisy Intermediate-Scale Quantum (NISQ) era, the physical quantum computing results are promising. To facilitate current quantum scale, we created a data tiering, model aggregation, and novel validation methods. Notably, the feature importance magnitudes from the quantum models had a much higher variation when contrasted to classical models. We can show that equivalent QML and CML models are complementary through diversity measurements. The diversity between QML and CML demonstrates that both approaches can contribute to a solution in different ways. Within this paper we focus on Quantum Support Vector Classifiers (QSVC), Variational Quantum Circuit (VQC), and their classical counterparts. The ESPN and IBM fantasy footballs Trade Assistant combines advanced statistical analysis with the natural language processing of Watson Discovery to serve up personalized trade recommendations that are fair and proposes a trade. Here, player valuation data of each player has been considered and this work can be extended to calculate the feature importance of other QML models such as Quantum Boltzmann machines.
Reward-Weighted Regression (RWR) belongs to a family of widely known iterative Reinforcement Learning algorithms based on the Expectation-Maximization framework. In this family, learning at each iteration consists of sampling a batch of trajectories using the current policy and fitting a new policy to maximize a return-weighted log-likelihood of actions. Although RWR is known to yield monotonic improvement of the policy under certain circumstances, whether and under which conditions RWR converges to the optimal policy have remained open questions. In this paper, we provide for the first time a proof that RWR converges to a global optimum when no function approximation is used, in a general compact setting. Furthermore, for the simpler case with finite state and action spaces we prove R-linear convergence of the state-value function to the optimum.
We study quantum soft covering and privacy amplification against quantum side information. The former task aims to approximate a quantum state by sampling from a prior distribution and querying a quantum channel. The latter task aims to extract uniform and independent randomness against quantum adversaries. For both tasks, we use trace distance to measure the closeness between the processed state and the ideal target state. We show that the minimal amount of samples for achieving an $\varepsilon$-covering is given by the $(1-\varepsilon)$-hypothesis testing information (with additional logarithmic additive terms), while the maximal extractable randomness for an $\varepsilon$-secret extractor is characterized by the conditional $(1-\varepsilon)$-hypothesis testing entropy. When performing independent and identical repetitions of the tasks, our one-shot characterizations lead to tight asymptotic expansions of the above-mentioned operational quantities. We establish their second-order rates given by the quantum mutual information variance and the quantum conditional information variance, respectively. Moreover, our results extend to the moderate deviation regime, which are the optimal asymptotic rates when the trace distances vanish at sub-exponential speed. Our proof technique is direct analysis of trace distance without smoothing.
We propose a new family of discrete-spacetime quantum walks capable to propagate on any arbitrary triangulations. Moreover we also extend and generalize the duality principle introduced by one of the authors, linking continuous local deformations of a given triangulation and the inhomogeneity of the local unitaries that guide the quantum walker. We proved that in the formal continuous limit, in both space and time, this new family of quantum walks converges to the (1+2)D massless Dirac equation on curved manifolds. We believe that this result has relevance in both modelling/simulating quantum transport on discrete curved structures, such as fullerene molecules or dynamical causal triangulation, and in addressing fast and efficient optimization problems in the context of the curved space optimization methods.
How well can we approximate a quantum channel output state using a random codebook with a certain size? In this work, we study the quantum soft covering problem. Namely, we use a random codebook with codewords independently sampled from a prior distribution and send it through a classical-quantum channel to approximate the target state. When using a random codebook sampled from an independent and identically distributed prior with a rate above the quantum mutual information, we show that the expected trace distance between the codebook-induced state and the target state decays with exponent given by the sandwiched R\'enyi information. On the other hand, when the rate of the codebook size is below the quantum mutual information, the trace distance converges to one exponentially fast. We obtain similar results when using a random constant composition codebook, whereas the sandwiched Augustin information expresses the error exponent. In addition to the above large deviation analysis, our results also hold in the moderate deviation regime. That is, we show that even when the rate of the codebook size approaches the quantum mutual information moderately quickly, the trace distance still vanishes asymptotically.
Real-world structural optimisation problems involve multiple loading conditions and design constraints, with responses typically depending on states of discretised governing equations. Generally, one uses gradient-based nested analysis and design approaches to solve these problems. Herein, solving both physical and adjoint problems dominates the overall computational effort. Although not commonly detected, real-world problems can contain linear dependencies between encountered physical and adjoint loads. Manually keeping track of such dependencies becomes tedious as design problems become increasingly involved. To detect and exploit such dependencies, this work proposes the use of a Linear Dependency Aware Solver (LDAS), which is able to efficiently detect linear dependencies between all loads to avoid unnecessary solves entirely and automatically. Illustrative examples are provided that demonstrate the need and benefits of using an LDAS, including a run-time experiment.
Designing encoding and decoding circuits to reliably send messages over many uses of a noisy channel is a central problem in communication theory. When studying the optimal transmission rates achievable with asymptotically vanishing error it is usually assumed that these circuits can be implemented using noise-free gates. While this assumption is satisfied for classical machines in many scenarios, it is not expected to be satisfied in the near term future for quantum machines where decoherence leads to faults in the quantum gates. As a result, fundamental questions regarding the practical relevance of quantum channel coding remain open. By combining techniques from fault-tolerant quantum computation with techniques from quantum communication, we initiate the study of these questions. We introduce fault-tolerant versions of quantum capacities quantifying the optimal communication rates achievable with asymptotically vanishing total error when the encoding and decoding circuits are affected by gate errors with small probability. Our main results are threshold theorems for the classical and quantum capacity: For every quantum channel $T$ and every $\epsilon>0$ there exists a threshold $p(\epsilon,T)$ for the gate error probability below which rates larger than $C-\epsilon$ are fault-tolerantly achievable with vanishing overall communication error, where $C$ denotes the usual capacity. Our results are not only relevant in communication over large distances, but also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise than affecting the local gates.
Differential privacy has been an exceptionally successful concept when it comes to providing provable security guarantees for classical computations. More recently, the concept was generalized to quantum computations. While classical computations are essentially noiseless and differential privacy is often achieved by artificially adding noise, near-term quantum computers are inherently noisy and it was observed that this leads to natural differential privacy as a feature. In this work we discuss quantum differential privacy in an information theoretic framework by casting it as a quantum divergence. A main advantage of this approach is that differential privacy becomes a property solely based on the output states of the computation, without the need to check it for every measurement. This leads to simpler proofs and generalized statements of its properties as well as several new bounds for both, general and specific, noise models. In particular, these include common representations of quantum circuits and quantum machine learning concepts. Here, we focus on the difference in the amount of noise required to achieve certain levels of differential privacy versus the amount that would make any computation useless. Finally, we also generalize the classical concepts of local differential privacy, R\'enyi differential privacy and the hypothesis testing interpretation to the quantum setting, providing several new properties and insights.
Interpretation of Deep Neural Networks (DNNs) training as an optimal control problem with nonlinear dynamical systems has received considerable attention recently, yet the algorithmic development remains relatively limited. In this work, we make an attempt along this line by reformulating the training procedure from the trajectory optimization perspective. We first show that most widely-used algorithms for training DNNs can be linked to the Differential Dynamic Programming (DDP), a celebrated second-order trajectory optimization algorithm rooted in the Approximate Dynamic Programming. In this vein, we propose a new variant of DDP that can accept batch optimization for training feedforward networks, while integrating naturally with the recent progress in curvature approximation. The resulting algorithm features layer-wise feedback policies which improve convergence rate and reduce sensitivity to hyper-parameter over existing methods. We show that the algorithm is competitive against state-ofthe-art first and second order methods. Our work opens up new avenues for principled algorithmic design built upon the optimal control theory.
Many resource allocation problems in the cloud can be described as a basic Virtual Network Embedding Problem (VNEP): finding mappings of request graphs (describing the workloads) onto a substrate graph (describing the physical infrastructure). In the offline setting, the two natural objectives are profit maximization, i.e., embedding a maximal number of request graphs subject to the resource constraints, and cost minimization, i.e., embedding all requests at minimal overall cost. The VNEP can be seen as a generalization of classic routing and call admission problems, in which requests are arbitrary graphs whose communication endpoints are not fixed. Due to its applications, the problem has been studied intensively in the networking community. However, the underlying algorithmic problem is hardly understood. This paper presents the first fixed-parameter tractable approximation algorithms for the VNEP. Our algorithms are based on randomized rounding. Due to the flexible mapping options and the arbitrary request graph topologies, we show that a novel linear program formulation is required. Only using this novel formulation the computation of convex combinations of valid mappings is enabled, as the formulation needs to account for the structure of the request graphs. Accordingly, to capture the structure of request graphs, we introduce the graph-theoretic notion of extraction orders and extraction width and show that our algorithms have exponential runtime in the request graphs' maximal width. Hence, for request graphs of fixed extraction width, we obtain the first polynomial-time approximations. Studying the new notion of extraction orders we show that (i) computing extraction orders of minimal width is NP-hard and (ii) that computing decomposable LP solutions is in general NP-hard, even when restricting request graphs to planar ones.