We propose a general class of INteger-valued Generalized AutoRegressive Conditionally Heteroscedastic (INGARCH) processes by allowing time-varying mean and dispersion parameters, which we call time-varying dispersion INGARCH (tv-DINGARCH) models. More specifically, we consider mixed Poisson INGARCH models and allow for dynamic modeling of the dispersion parameter (as well as the mean), similar to the spirit of the ordinary GARCH models. We derive conditions to obtain first and second-order stationarity, and ergodicity as well. Estimation of the parameters is addressed and their associated asymptotic properties are established as well. A restricted bootstrap procedure is proposed for testing constant dispersion against time-varying dispersion. Monte Carlo simulation studies are presented for checking point estimation, standard errors, and the performance of the restricted bootstrap approach. We apply the tv-DINGARCH process to model the weekly number of reported measles infections in North Rhine-Westphalia, Germany, from January 2001 to May 2013, and compare its performance to the ordinary INGARCH approach.
Tracking and segmenting multiple similar objects with complex or separate parts in long-term videos is inherently challenging due to the ambiguity of target parts and identity confusion caused by occlusion, background clutter, and long-term variations. In this paper, we propose a robust video object segmentation framework equipped with spatial-semantic features and discriminative object queries to address the above issues. Specifically, we construct a spatial-semantic network comprising a semantic embedding block and spatial dependencies modeling block to associate the pretrained ViT features with global semantic features and local spatial features, providing a comprehensive target representation. In addition, we develop a masked cross-attention module to generate object queries that focus on the most discriminative parts of target objects during query propagation, alleviating noise accumulation and ensuring effective long-term query propagation. The experimental results show that the proposed method set a new state-of-the-art performance on multiple datasets, including the DAVIS2017 test (89.1%), YoutubeVOS 2019 (88.5%), MOSE (75.1%), LVOS test (73.0%), and LVOS val (75.1%), which demonstrate the effectiveness and generalization capacity of the proposed method. We will make all source code and trained models publicly available.
Beam search with masked language models (MLMs) is challenging in part because joint probability distributions over sequences are not readily available, unlike for autoregressive models. However, estimating such distributions has important domain-specific applications such as ancient text restoration and protein engineering. Here we present probabilistically-sound methods for beam search with MLMs. First, we clarify the conditions under which it is theoretically sound to perform text infilling with MLMs using standard beam search. When these conditions fail, we provide a probabilistically-sound modification with no additional computational complexity and demonstrate that it is superior to the aforementioned beam search in the expected conditions. We then present empirical results comparing several infilling approaches with MLMs across several domains.
Recent studies suggest that with sufficiently wide models, most SGD solutions can, up to permutation, converge into the same basin. This phenomenon, known as the model re-basin regime, has significant implications for model averaging by ensuring the linear mode connectivity. However, current re-basin strategies are ineffective in many scenarios due to a lack of comprehensive understanding of underlying mechanisms. Addressing this gap, this paper provides novel insights into understanding and improving the standard practice. Firstly, we decompose re-normalization into rescaling and reshift, uncovering that rescaling plays a crucial role in re-normalization while re-basin performance is sensitive to shifts in model activation. The finding calls for a more nuanced handling of the activation shift. Secondly, we identify that the merged model suffers from the issue of activation collapse and magnitude collapse. Varying the learning rate, weight decay, and initialization method can mitigate the issues and improve model performance. Lastly, we propose a new perspective to unify the re-basin and pruning, under which a lightweight yet effective post-pruning technique is derived, which can significantly improve the model performance after pruning. Our implementation is available at //github.com/XingyuQu/rethink-re-basin.
Many datasets have been developed to train and evaluate document-level relation extraction (RE) models. Most of these are constructed using real-world data. It has been shown that RE models trained on real-world data suffer from factual biases. To evaluate and address this issue, we present CovEReD, a counterfactual data generation approach for document-level relation extraction datasets using entity replacement. We first demonstrate that models trained on factual data exhibit inconsistent behavior: while they accurately extract triples from factual data, they fail to extract the same triples after counterfactual modification. This inconsistency suggests that models trained on factual data rely on spurious signals such as specific entities and external knowledge $\unicode{x2013}$ rather than on the input context $\unicode{x2013}$ to extract triples. We show that by generating document-level counterfactual data with CovEReD and training models on them, consistency is maintained with minimal impact on RE performance. We release our CovEReD pipeline as well as Re-DocRED-CF, a dataset of counterfactual RE documents, to assist in evaluating and addressing inconsistency in document-level RE.
We propose a method that achieves near-optimal rates for smooth stochastic convex optimization and requires essentially no prior knowledge of problem parameters. This improves on prior work which requires knowing at least the initial distance to optimality d0. Our method, U-DoG, combines UniXGrad (Kavis et al., 2019) and DoG (Ivgi et al., 2023) with novel iterate stabilization techniques. It requires only loose bounds on d0 and the noise magnitude, provides high probability guarantees under sub-Gaussian noise, and is also near-optimal in the non-smooth case. Our experiments show consistent, strong performance on convex problems and mixed results on neural network training.
Supervised learning-based adversarial attack detection methods rely on a large number of labeled data and suffer significant performance degradation when applying the trained model to new domains. In this paper, we propose a self-supervised representation learning framework for the adversarial attack detection task to address this drawback. Firstly, we map the pixels of augmented input images into an embedding space. Then, we employ the prototype-wise contrastive estimation loss to cluster prototypes as latent variables. Additionally, drawing inspiration from the concept of memory banks, we introduce a discrimination bank to distinguish and learn representations for each individual instance that shares the same or a similar prototype, establishing a connection between instances and their associated prototypes. We propose a parallel axial-attention (PAA)-based encoder to facilitate the training process by parallel training over height- and width-axis of attention maps. Experimental results show that, compared to various benchmark self-supervised vision learning models and supervised adversarial attack detection methods, the proposed model achieves state-of-the-art performance on the adversarial attack detection task across a wide range of images.
Prior research has enhanced the ability of Large Language Models (LLMs) to solve logic puzzles using techniques such as chain-of-thought prompting or introducing a symbolic representation. These frameworks are still usually insufficient to solve complicated logical problems, such as Zebra puzzles, due to the inherent complexity of translating natural language clues into logical statements. We introduce a multi-agent system, ZPS, that integrates LLMs with an off the shelf theorem prover. This system tackles the complex puzzle-solving task by breaking down the problem into smaller, manageable parts, generating SMT (Satisfiability Modulo Theories) code to solve them with a theorem prover, and using feedback between the agents to repeatedly improve their answers. We also introduce an automated grid puzzle grader to assess the correctness of our puzzle solutions and show that the automated grader is reliable by evaluating it in a user-study. Our approach shows improvement in all three LLMs we tested, with GPT-4 showing 166% improvement in the number of fully correct solutions.
Distribution shift is a key challenge for predictive models in practice, creating the need to identify potentially harmful shifts in advance of deployment. Existing work typically defines these worst-case shifts as ones that most degrade the individual-level accuracy of the model. However, when models are used to make a downstream population-level decision like the allocation of a scarce resource, individual-level accuracy may be a poor proxy for performance on the task at hand. We introduce a novel framework that employs a hierarchical model structure to identify worst-case distribution shifts in predictive resource allocation settings by capturing shifts both within and across instances of the decision problem. This task is more difficult than in standard distribution shift settings due to combinatorial interactions, where decisions depend on the joint presence of individuals in the allocation task. We show that the problem can be reformulated as a submodular optimization problem, enabling efficient approximations of worst-case loss. Applying our framework to real data, we find empirical evidence that worst-case shifts identified by one metric often significantly diverge from worst-case distributions identified by other metrics.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.