We explore a novel variant of the classical prophet inequality problem, where the values of a sequence of items are drawn i.i.d. from some distribution, and an online decision maker must select one item irrevocably. We establish that the competitive ratio between the expected optimal performance of the online decision maker compared to that of a prophet, who uses the average of the top $\ell$ items, must be greater than $\ell/c_{\ell}$, with $c_{\ell}$ the solution to an integral equation. We prove that this lower bound is larger than $1-1/(\exp(\ell)-1)$. This implies that the bound converges exponentially fast to $1$ as $\ell$ grows. In particular, the bound for $\ell=2$ is $2/c_{2} \approx 0.966$ which is much closer to $1$ than the classical bound of $0.745$ for $\ell=1$. Additionally, the proposed algorithm can be extended to a more general scenario, where the decision maker is permitted to select $k$ items. This subsumes the $k$ multi-unit i.i.d. prophet problem and provides the current best asymptotic guarantees, as well as enables broader understanding in the more general framework. Finally, we prove a nearly tight competitive ratio when only static threshold policies are allowed.
Score-based diffusion models, which generate new data by learning to reverse a diffusion process that perturbs data from the target distribution into noise, have achieved remarkable success across various generative tasks. Despite their superior empirical performance, existing theoretical guarantees are often constrained by stringent assumptions or suboptimal convergence rates. In this paper, we establish a fast convergence theory for a popular SDE-based sampler under minimal assumptions. Our analysis shows that, provided $\ell_{2}$-accurate estimates of the score functions, the total variation distance between the target and generated distributions is upper bounded by $O(d/T)$ (ignoring logarithmic factors), where $d$ is the data dimensionality and $T$ is the number of steps. This result holds for any target distribution with finite first-order moment. To our knowledge, this improves upon existing convergence theory for both the SDE-based sampler and another ODE-based sampler, while imposing minimal assumptions on the target data distribution and score estimates. This is achieved through a novel set of analytical tools that provides a fine-grained characterization of how the error propagates at each step of the reverse process.
We present a 1.8334-approximation algorithm for Vertex Cover on string graphs given with a representation, which takes polynomial time in the size of the representation; the exact approximation factor is $11/6$. Recently, the barrier of 2 was broken by Lokshtanov et al. [SoGC '24] with a 1.9999-approximation algorithm. Thus we increase by three orders of magnitude the distance of the approximation ratio to the trivial bound of 2. Our algorithm is very simple. The intricacies reside in its analysis, where we mainly establish that string graphs without odd cycles of length at most 11 are 8-colorable. Previously, Chudnovsky, Scott, and Seymour [JCTB '21] showed that string graphs without odd cycles of length at most 7 are 80-colorable, and string graphs without odd cycles of length at most 5 have bounded chromatic number.
Single image scene relighting aims to generate a realistic new version of an input image so that it appears to be illuminated by a new target light condition. Although existing works have explored this problem from various perspectives, generating relit images under arbitrary light conditions remains highly challenging, and related datasets are scarce. Our work addresses this problem from both the dataset and methodological perspectives. We propose two new datasets: a synthetic dataset with the ground truth of intrinsic components and a real dataset collected under laboratory conditions. These datasets alleviate the scarcity of existing datasets. To incorporate physical consistency in the relighting pipeline, we establish a two-stage network based on intrinsic decomposition, giving outputs at intermediate steps, thereby introducing physical constraints. When the training set lacks ground truth for intrinsic decomposition, we introduce an unsupervised module to ensure that the intrinsic outputs are satisfactory. Our method outperforms the state-of-the-art methods in performance, as tested on both existing datasets and our newly developed datasets. Furthermore, pretraining our method or other prior methods using our synthetic dataset can enhance their performance on other datasets. Since our method can accommodate any light conditions, it is capable of producing animated results. The dataset, method, and videos are publicly available.
Recently, there has been a significant upsurge of interest in leveraging large language models (LLMs) to assist scientific discovery. However, most LLMs only focus on general science, while they lack domain-specific knowledge, such as chemical molecules and amino acid sequences. To bridge these gaps, we introduce SciDFM, a mixture-of-experts LLM, which is trained from scratch and is able to conduct college-level scientific reasoning and understand molecules and amino acid sequences. We collect a large-scale training corpus containing numerous scientific papers and books from different disciplines as well as data from domain-specific databases. We further fine-tune the pre-trained model on lots of instruction data to improve performances on downstream benchmarks. From experiment results, we show that SciDFM achieves strong performance on general scientific benchmarks such as SciEval and SciQ, and it reaches a SOTA performance on domain-specific benchmarks among models of similar size. We further analyze the expert layers and show that the results of expert selection vary with data from different disciplines. To benefit the broader research community, we open-source SciDFM at //huggingface.co/OpenDFM/SciDFM-MoE-A5.6B-v1.0.
As networks continue to expand and become more interconnected, the need for novel malware detection methods becomes more pronounced. Traditional security measures are increasingly inadequate against the sophistication of modern cyber attacks. Deep Packet Inspection (DPI) has been pivotal in enhancing network security, offering an in-depth analysis of network traffic that surpasses conventional monitoring techniques. DPI not only examines the metadata of network packets, but also dives into the actual content being carried within the packet payloads, providing a comprehensive view of the data flowing through networks. The integration of advanced deep learning techniques with DPI has introduced modern methodologies into malware detection. However, the challenge with the state-of-the-art supervised learning approaches is that they prevent the generalization to unseen attacks embedded in the payloads, prohibiting them from accurately detecting new attacks and transferring knowledge learned from previous attacks to the new attacks with small labeled sample sizes. This paper leverages the recent advancements in self-supervised learning and few-shot learning. Our proposed self-supervised approach trains a transformer to learn the embedding of the payloads from a vast amount of unlabeled datasets by masking portions of payloads, leading to a learnt representation that well generalizes to various downstream tasks. Once the representation is extracted from payloads, they are used to train a malware detection algorithm. The representation obtained from the transformer is then used to adapt the malware detector to novel types of attacks using few-shot learning approaches. Our experimental results across several datasets show the great success and generalization of the proposed approach to novel scenarios.
Transfer learning techniques aim to leverage information from multiple related datasets to enhance prediction quality against a target dataset. Such methods have been adopted in the context of high-dimensional sparse regression, and some Lasso-based algorithms have been invented: Trans-Lasso and Pretraining Lasso are such examples. These algorithms require the statistician to select hyperparameters that control the extent and type of information transfer from related datasets. However, selection strategies for these hyperparameters, as well as the impact of these choices on the algorithm's performance, have been largely unexplored. To address this, we conduct a thorough, precise study of the algorithm in a high-dimensional setting via an asymptotic analysis using the replica method. Our approach reveals a surprisingly simple behavior of the algorithm: Ignoring one of the two types of information transferred to the fine-tuning stage has little effect on generalization performance, implying that efforts for hyperparameter selection can be significantly reduced. Our theoretical findings are also empirically supported by real-world applications on the IMDb dataset.
In speech deepfake detection, one of the critical aspects is developing detectors able to generalize on unseen data and distinguish fake signals across different datasets. Common approaches to this challenge involve incorporating diverse data into the training process or fine-tuning models on unseen datasets. However, these solutions can be computationally demanding and may lead to the loss of knowledge acquired from previously learned data. Continual learning techniques offer a potential solution to this problem, allowing the models to learn from unseen data without losing what they have already learned. Still, the optimal way to apply these algorithms for speech deepfake detection remains unclear, and we do not know which is the best way to apply these algorithms to the developed models. In this paper we address this aspect and investigate whether, when retraining a speech deepfake detector, it is more effective to apply continual learning across the entire model or to update only some of its layers while freezing others. Our findings, validated across multiple models, indicate that the most effective approach among the analyzed ones is to update only the weights of the initial layers, which are responsible for processing the input features of the detector.
Digital acquisition of high bandwidth signals is particularly challenging when Nyquist rate sampling is impractical. This has led to extensive research in sub-Nyquist sampling methods, primarily for spectral and sinusoidal frequency estimation. However, these methods struggle with high-dynamic-range (HDR) signals that can saturate analog-to-digital converters (ADCs). Addressing this, we introduce a novel sub-Nyquist spectral estimation method, driven by the Unlimited Sensing Framework (USF), utilizing a multi-channel system. The sub-Nyquist USF method aliases samples in both amplitude and frequency domains, rendering the inverse problem particularly challenging. Towards this goal, our exact recovery theorem establishes that $K$ sinusoids of arbitrary amplitudes and frequencies can be recovered from $6K + 4$ modulo samples, remarkably, independent of the sampling rate or folding threshold. In the true spirit of sub-Nyquist sampling, via modulo ADC hardware experiments, we demonstrate successful spectrum estimation of HDR signals in the kHz range using Hz range sampling rates (0.078\% Nyquist rate). Our experiments also reveal up to a 33-fold improvement in frequency estimation accuracy using one less bit compared to conventional ADCs. These findings open new avenues in spectral estimation applications, e.g., radars, direction-of-arrival (DoA) estimation, and cognitive radio, showcasing the potential of USF.
In the rapidly advancing realm of visual generation, diffusion models have revolutionized the landscape, marking a significant shift in capabilities with their impressive text-guided generative functions. However, relying solely on text for conditioning these models does not fully cater to the varied and complex requirements of different applications and scenarios. Acknowledging this shortfall, a variety of studies aim to control pre-trained text-to-image (T2I) models to support novel conditions. In this survey, we undertake a thorough review of the literature on controllable generation with T2I diffusion models, covering both the theoretical foundations and practical advancements in this domain. Our review begins with a brief introduction to the basics of denoising diffusion probabilistic models (DDPMs) and widely used T2I diffusion models. We then reveal the controlling mechanisms of diffusion models, theoretically analyzing how novel conditions are introduced into the denoising process for conditional generation. Additionally, we offer a detailed overview of research in this area, organizing it into distinct categories from the condition perspective: generation with specific conditions, generation with multiple conditions, and universal controllable generation. For an exhaustive list of the controllable generation literature surveyed, please refer to our curated repository at \url{//github.com/PRIV-Creation/Awesome-Controllable-T2I-Diffusion-Models}.
Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.