亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper introduces a novel nonlinear stochastic model predictive control path integral (MPPI) method, which considers chance constraints on system states. The proposed belief-space stochastic MPPI (BSS-MPPI) applies Monte-Carlo sampling to evaluate state distributions resulting from underlying systematic disturbances, and utilizes a Control Barrier Function (CBF) inspired heuristic in belief space to fulfill the specified chance constraints. Compared to several previous stochastic predictive control methods, our approach applies to general nonlinear dynamics without requiring the computationally expensive system linearization step. Moreover, the BSS-MPPI controller can solve optimization problems without limiting the form of the objective function and chance constraints. By multi-threading the sampling process using a GPU, we can achieve fast real-time planning for time- and safety-critical tasks such as autonomous racing. Our results on a realistic race-car simulation study show significant reductions in constraint violation compared to some of the prior MPPI approaches, while being comparable in computation times.

相關內容

Autoencoding is a popular method in representation learning. Conventional autoencoders employ symmetric encoding-decoding procedures and a simple Euclidean latent space to detect hidden low-dimensional structures in an unsupervised way. Some modern approaches to novel data generation such as generative adversarial networks askew this symmetry, but still employ a pair of massive networks--one to generate the image and another to judge the images quality based on priors learned from a training set. This work introduces a chart autoencoder with an asymmetric encoding-decoding process that can incorporate additional semi-supervised information such as class labels. Besides enhancing the capability for handling data with complicated topological and geometric structures, the proposed model can successfully differentiate nearby but disjoint manifolds and intersecting manifolds with only a small amount of supervision. Moreover, this model only requires a low-complexity encoding operation, such as a locally defined linear projection. We discuss the approximation power of such networks and derive a bound that essentially depends on the intrinsic dimension of the data manifold rather than the dimension of ambient space. Next we incorporate bounds for the sampling rate of training data need to faithfully represent a given data manifold. We present numerical experiments that verify that the proposed model can effectively manage data with multi-class nearby but disjoint manifolds of different classes, overlapping manifolds, and manifolds with non-trivial topology. Finally, we conclude with some experiments on computer vision and molecular dynamics problems which showcase the efficacy of our methods on real-world data.

Information Retrieval (IR) methods aim to identify relevant documents in response to a given query, which have gained remarkable attention due to their successful application in various natural language tasks. However, existing approaches typically consider only the textual information within the documents, which overlooks the fact that documents can contain multiple modalities, including texts, images, and tables. Further, they often segment each long document into multiple discrete passages for embedding, preventing them from capturing the overall document context and interactions between paragraphs. We argue that these two limitations lead to suboptimal document representations for retrieval. In this work, to address them, we aim to produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities. Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation. Moreover, to mitigate the information loss from segmenting documents into passages, instead of representing and retrieving passages individually, we further merge the representations of segmented passages into one single document representation, while we additionally introduce a reranking strategy to decouple and identify the relevant passage within the document if necessary. Then, through extensive experiments on diverse information retrieval scenarios considering both the textual and multimodal queries, we show that our approach substantially outperforms relevant baselines, thanks to the consideration of the multimodal information interleaved within the documents in a unified way.

The two-alternative forced choice (2AFC) experimental method is popular in the visual perception literature, where practitioners aim to understand how human observers perceive distances within triplets made of a reference image and two distorted versions. In the past, this had been conducted in controlled environments, with triplets sharing images, so it was possible to rank the perceived quality. This ranking would then be used to evaluate perceptual distance models against the experimental data. Recently, crowd-sourced perceptual datasets have emerged, with no images shared between triplets, making ranking infeasible. Evaluating perceptual distance models using this data reduces the judgements on a triplet to a binary decision, namely, whether the distance model agrees with the human decision - which is suboptimal and prone to misleading conclusions. Instead, we statistically model the underlying decision-making process during 2AFC experiments using a binomial distribution. Having enough empirical data, we estimate a smooth and consistent distribution of the judgements on the reference-distorted distance plane, according to each distance model. By applying maximum likelihood, we estimate the parameter of the local binomial distribution, and a global measurement of the expected log-likelihood of the measured responses. We calculate meaningful and well-founded metrics for the distance model, beyond the mere prediction accuracy as percentage agreement, even with variable numbers of judgements per triplet -- key advantages over both classical and neural network methods.

Dexterous hands exhibit significant potential for complex real-world grasping tasks. While recent studies have primarily focused on learning policies for specific robotic hands, the development of a universal policy that controls diverse dexterous hands remains largely unexplored. In this work, we study the learning of cross-embodiment dexterous grasping policies using reinforcement learning (RL). Inspired by the capability of human hands to control various dexterous hands through teleoperation, we propose a universal action space based on the human hand's eigengrasps. The policy outputs eigengrasp actions that are then converted into specific joint actions for each robot hand through a retargeting mapping. We simplify the robot hand's proprioception to include only the positions of fingertips and the palm, offering a unified observation space across different robot hands. Our approach demonstrates an 80% success rate in grasping objects from the YCB dataset across four distinct embodiments using a single vision-based policy. Additionally, our policy exhibits zero-shot generalization to two previously unseen embodiments and significant improvement in efficient finetuning. For further details and videos, visit our project page //sites.google.com/view/crossdex.

This work presents RNAdiffusion, a latent diffusion model for generating and optimizing discrete RNA sequences of variable lengths. RNA is a key intermediary between DNA and protein, exhibiting high sequence diversity and complex three-dimensional structures to support a wide range of functions. We utilize pretrained BERT-type models to encode raw RNA sequences into token-level, biologically meaningful representations. A Query Transformer is employed to compress such representations into a set of fixed-length latent vectors, with an autoregressive decoder trained to reconstruct RNA sequences from these latent variables. We then develop a continuous diffusion model within this latent space. To enable optimization, we integrate the gradients of reward models--surrogates for RNA functional properties--into the backward diffusion process, thereby generating RNAs with high reward scores. Empirical results confirm that RNAdiffusion generates non-coding RNAs that align with natural distributions across various biological metrics. Further, we fine-tune the diffusion model on mRNA 5' untranslated regions (5'-UTRs) and optimize sequences for high translation efficiencies. Our guided diffusion model effectively generates diverse 5'-UTRs with high Mean Ribosome Loading (MRL) and Translation Efficiency (TE), outperforming baselines in balancing rewards and structural stability trade-off. Our findings hold potential for advancing RNA sequence-function research and therapeutic RNA design.

This paper explores the weakly-supervised referring image segmentation (WRIS) problem, and focuses on a challenging setup where target localization is learned directly from image-text pairs. We note that the input text description typically already contains detailed information on how to localize the target object, and we also observe that humans often follow a step-by-step comprehension process (\ie, progressively utilizing target-related attributes and relations as cues) to identify the target object. Hence, we propose a novel Progressive Comprehension Network (PCNet) to leverage target-related textual cues from the input description for progressively localizing the target object. Specifically, we first use a Large Language Model (LLM) to decompose the input text description into short phrases. These short phrases are taken as target-related cues and fed into a Conditional Referring Module (CRM) in multiple stages, to allow updating the referring text embedding and enhance the response map for target localization in a multi-stage manner. Based on the CRM, we then propose a Region-aware Shrinking (RaS) loss to constrain the visual localization to be conducted progressively in a coarse-to-fine manner across different stages. Finally, we introduce an Instance-aware Disambiguation (IaD) loss to suppress instance localization ambiguity by differentiating overlapping response maps generated by different referring texts on the same image. Extensive experiments show that our method outperforms SOTA methods on three common benchmarks.

With the rapid advancement of large language models (LLMs), the diversity of multi-LLM tasks and the variability in their pricing structures have become increasingly important, as costs can vary greatly between different LLMs. To tackle these challenges, we introduce the \textit{C2MAB-V}, a \underline{C}ost-effective \underline{C}ombinatorial \underline{M}ulti-armed \underline{B}andit with \underline{V}ersatile reward models for optimal LLM selection and usage. This online model differs from traditional static approaches or those reliant on a single LLM without cost consideration. With multiple LLMs deployed on a scheduling cloud and a local server dedicated to handling user queries, \textit{C2MAB-V} facilitates the selection of multiple LLMs over a combinatorial search space, specifically tailored for various collaborative task types with different reward models. Based on our designed online feedback mechanism and confidence bound technique, \textit{C2MAB-V} can effectively address the multi-LLM selection challenge by managing the exploration-exploitation trade-off across different models, while also balancing cost and reward for diverse tasks. The NP-hard integer linear programming problem for selecting multiple LLMs with trade-off dilemmas is addressed by: i) decomposing the integer problem into a relaxed form by the local server, ii) utilizing a discretization rounding scheme that provides optimal LLM combinations by the scheduling cloud, and iii) continual online updates based on feedback. Theoretically, we prove that \textit{C2MAB-V} offers strict guarantees over versatile reward models, matching state-of-the-art results for regret and violations in some degenerate cases. Empirically, we show that \textit{C2MAB-V} effectively balances performance and cost-efficiency with nine LLMs for three application scenarios.

This work presents a simple and robust method to construct a B-spline based Everett map, for application in the Preisach model of hysteresis, to predict static hysteresis behavior. Its strength comes from the ability to directly capture the Everett map as a well-founded closed-form B-spline surface expression, while also eliminating model artifacts that plague Everett map based Preisach models. Contrary to other works, that applied numerical descriptions for the Everett map, the presented approach is of completely analytic nature. In this work the B-spline surface fitting procedure and the necessary set of constraints are explained. Furthermore, the B-spline based Everett map is validated by ensuring that model artifacts were properly eliminated. Additionally, the model was compared with four benchmark excitations. Namely, a degaussing signal, a set of first-order reversal curves, an arbitrary excitation with high-order reversal curves, and a PWM like signal. The model was able to reproduce all benchmarks with high accuracy.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司