In recent years, the use of inspection drones has become increasingly popular for high-voltage electric cable inspections due to their efficiency, cost-effectiveness, and ability to access hard-to-reach areas. However, safely landing drones on power lines, especially under windy conditions, remains a significant challenge. This study introduces a semi-autonomous control scheme for landing on an electrical line with the NADILE drone (an experimental drone based on original LineDrone key features for inspection of power lines) and assesses the operating envelope under various wind conditions. A Monte Carlo method is employed to analyze the success probability of landing given initial drone states. The performance of the system is evaluated for two landing strategies, variously controllers parameters and four level of wind intensities. The results show that a two-stage landing strategies offers higher probabilities of landing success and give insight regarding the best controller parameters and the maximum wind level for which the system is robust. Lastly, an experimental demonstration of the system landing autonomously on a power line is presented.
Existing distributed denial of service attack (DDoS) solutions cannot handle highly aggregated data rates; thus, they are unsuitable for Internet service provider (ISP) core networks. This article proposes a digital twin-enabled intelligent DDoS detection mechanism using an online learning method for autonomous systems. Our contributions are three-fold: we first design a DDoS detection architecture based on the digital twin for ISP core networks. We implemented a Yet Another Next Generation (YANG) model and an automated feature selection (AutoFS) module to handle core network data. We used an online learning approach to update the model instantly and efficiently, improve the learning model quickly, and ensure accurate predictions. Finally, we reveal that our proposed solution successfully detects DDoS attacks and updates the feature selection method and learning model with a true classification rate of ninety-seven percent. Our proposed solution can estimate the attack within approximately fifteen minutes after the DDoS attack starts.
A recent paper by Farina & Pipis (2023) established the existence of uncoupled no-linear-swap regret dynamics with polynomial-time iterations in extensive-form games. The equilibrium points reached by these dynamics, known as linear correlated equilibria, are currently the tightest known relaxation of correlated equilibrium that can be learned in polynomial time in any finite extensive-form game. However, their properties remain vastly unexplored, and their computation is onerous. In this paper, we provide several contributions shedding light on the fundamental nature of linear-swap regret. First, we show a connection between linear deviations and a generalization of communication deviations in which the player can make queries to a "mediator" who replies with action recommendations, and, critically, the player is not constrained to match the timing of the game as would be the case for communication deviations. We coin this latter set the untimed communication (UTC) deviations. We show that the UTC deviations coincide precisely with the linear deviations, and therefore that any player minimizing UTC regret also minimizes linear-swap regret. We then leverage this connection to develop state-of-the-art no-regret algorithms for computing linear correlated equilibria, both in theory and in practice. In theory, our algorithms achieve polynomially better per-iteration runtimes; in practice, our algorithms represent the state of the art by several orders of magnitude.
Deep neural networks have significantly alleviated the burden of feature engineering, but comparable efforts are now required to determine effective architectures for these networks. Furthermore, as network sizes have become excessively large, a substantial amount of resources is invested in reducing their sizes. These challenges can be effectively addressed through the sparsification of over-complete models. In this study, we propose a fully differentiable sparsification method for deep neural networks, which can zero out unimportant parameters by directly optimizing a regularized objective function with stochastic gradient descent. Consequently, the proposed method can learn both the sparsified structure and weights of a network in an end-to-end manner. It can be directly applied to various modern deep neural networks and requires minimal modification to the training process. To the best of our knowledge, this is the first fully differentiable sparsification method.
When vehicle routing decisions are intertwined with higher-level decisions, the resulting optimization problems pose significant challenges for computation. Examples are the multi-depot vehicle routing problem (MDVRP), where customers are assigned to depots before delivery, and the capacitated location routing problem (CLRP), where the locations of depots should be determined first. A simple and straightforward approach for such hierarchical problems would be to separate the higher-level decisions from the complicated vehicle routing decisions. For each higher-level decision candidate, we may evaluate the underlying vehicle routing problems to assess the candidate. As this approach requires solving vehicle routing problems multiple times, it has been regarded as impractical in most cases. We propose a novel deep-learning-based approach called Genetic Algorithm with Neural Cost Predictor (GANCP) to tackle the challenge and simplify algorithm developments. For each higher-level decision candidate, we predict the objective function values of the underlying vehicle routing problems using a pre-trained graph neural network without actually solving the routing problems. In particular, our proposed neural network learns the objective values of the HGS-CVRP open-source package that solves capacitated vehicle routing problems. Our numerical experiments show that this simplified approach is effective and efficient in generating high-quality solutions for both MDVRP and CLRP and has the potential to expedite algorithm developments for complicated hierarchical problems. We provide computational results evaluated in the standard benchmark instances used in the literature.
The last few decades have led to the rise of research focused on propulsion and control systems for bio-inspired unmanned underwater vehicles (UUVs), which provide more maneuverable alternatives to traditional UUVs in underwater missions. Propulsive efficiency is of utmost importance for flapping-fin UUVs in order to extend their range and endurance for essential operations. To optimize for different gait performance metrics, we develop a non-dimensional figure of merit (FOM), derived from measures of propulsive efficiency, that is able to evaluate different fin designs and kinematics, and allow for comparison with other bio-inspired platforms. We create and train computational models using experimental data, and use these models to predict thrust and power under different fin operating states, providing efficiency profiles. We then use the developed FOM to analyze optimal gaits and compare the performance between different fin materials. These comparisons provide a better understanding of how fin materials affect our thrust generation and propulsive efficiency, allowing us to inform control systems and weight for efficiency on an inverse gait-selector model.
Unmanned aerial vehicles (UAVs) can provide wireless access to terrestrial users, regardless of geographical constraints, and will be an important part of future communication systems. In this paper, a multi-user downlink dual-UAVs enabled covert communication system was investigated, in which a UAV transmits secure information to ground users in the presence of multiple wardens as well as a friendly jammer UAV transmits artificial jamming signals to fight with the wardens. The scenario of wardens being outfitted with a single antenna is considered, and the detection error probability (DEP) of wardens with finite observations is researched. Then, considering the uncertainty of wardens' location, a robust optimization problem with worst-case covertness constraint is formulated to maximize the average covert rate by jointly optimizing power allocation and trajectory. To cope with the optimization problem, an algorithm based on successive convex approximation methods is proposed. Thereafter, the results are extended to the case where all the wardens are equipped with multiple antennas. After analyzing the DEP in this scenario, a tractable lower bound of the DEP is obtained by utilizing Pinsker's inequality. Subsequently, the non-convex optimization problem was established and efficiently coped by utilizing a similar algorithm as in the single-antenna scenario. Numerical results indicate the effectiveness of our proposed algorithm.
We aim to maximize the energy efficiency, gauged as average energy cost per job, in a large-scale server farm with various storage or/and computing components modeled as parallel abstracted servers. Each server operates in multiple power modes characterized by potentially different service and energy consumption rates. The heterogeneity of servers and multiple power modes complicate the maximization problem, where optimal solutions are generally intractable. Relying on the Whittle relaxation technique, we resort to a near-optimal, scalable job-assignment policy. Under a mild condition related to the service and energy consumption rates of the servers, we prove that our proposed policy approaches optimality as the size of the entire system tends to infinity; that is, it is asymptotically optimal. For the non-asymptotic regime, we show the effectiveness of the proposed policy through numerical simulations, where the policy outperforms all the tested baselines, and we numerically demonstrate its robustness against heavy-tailed job-size distributions.
Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.
The development of unmanned aerial vehicles (UAVs) has been gaining momentum in recent years owing to technological advances and a significant reduction in their cost. UAV technology can be used in a wide range of domains, including communication, agriculture, security, and transportation. It may be useful to group the UAVs into clusters/flocks in certain domains, and various challenges associated with UAV usage can be alleviated by clustering. Several computational challenges arise in UAV flock management, which can be solved by using machine learning (ML) methods. In this survey, we describe the basic terms relating to UAVS and modern ML methods, and we provide an overview of related tutorials and surveys. We subsequently consider the different challenges that appear in UAV flocks. For each issue, we survey several machine learning-based methods that have been suggested in the literature to handle the associated challenges. Thereafter, we describe various open issues in which ML can be applied to solve the different challenges of flocks, and we suggest means of using ML methods for this purpose. This comprehensive review may be useful for both researchers and developers in providing a wide view of various aspects of state-of-the-art ML technologies that are applicable to flock management.
Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.