亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the voting game where agents' preferences are endogenously decided by the information they receive, and they can collaborate in a group. We show that strategic voting behaviors have a positive impact on leading to the ``correct'' decision, outperforming the common non-strategic behavior of informative voting and sincere voting. Our results give merit to strategic voting for making good decisions. To this end, we investigate a natural model, where voters' preferences between two alternatives depend on a discrete state variable that is not directly observable. Each voter receives a private signal that is correlated with the state variable. We reveal a surprising equilibrium between a strategy profile being a strong equilibrium and leading to the decision favored by the majority of agents conditioned on them knowing the ground truth (referred to as the informed majority decision): as the size of the vote goes to infinity, every $\varepsilon$-strong Bayes Nash Equilibrium with $\varepsilon$ converging to $0$ formed by strategic agents leads to the informed majority decision with probability converging to $1$. On the other hand, we show that informative voting leads to the informed majority decision only under unbiased instances, and sincere voting leads to the informed majority decision only when it also forms an equilibrium.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · MoDELS · 語言模型化 · 多峰值 · INTERACT ·
2023 年 7 月 7 日

Instruction tuning large language model (LLM) on image-text pairs has achieved unprecedented vision-language multimodal abilities. However, their vision-language alignments are only built on image-level, the lack of region-level alignment limits their advancements to fine-grained multimodal understanding. In this paper, we propose instruction tuning on region-of-interest. The key design is to reformulate the bounding box as the format of spatial instruction. The interleaved sequences of visual features extracted by the spatial instruction and the language embedding are input to LLM, and trained on the transformed region-text data in instruction tuning format. Our region-level vision-language model, termed as GPT4RoI, brings brand new conversational and interactive experience beyond image-level understanding. (1) Controllability: Users can interact with our model by both language and spatial instructions to flexibly adjust the detail level of the question. (2) Capacities: Our model supports not only single-region spatial instruction but also multi-region. This unlocks more region-level multimodal capacities such as detailed region caption and complex region reasoning. (3) Composition: Any off-the-shelf object detector can be a spatial instruction provider so as to mine informative object attributes from our model, like color, shape, material, action, relation to other objects, etc. The code, data, and demo can be found at //github.com/jshilong/GPT4RoI.

Algorithmic differentiation (AD) is a set of techniques that provide partial derivatives of computer-implemented functions. Such a function can be supplied to state-of-the-art AD tools via its source code, or via an intermediate representation produced while compiling its source code. We present the novel AD tool Derivgrind, which augments the machine code of compiled programs with forward-mode AD logic. Derivgrind leverages the Valgrind instrumentation framework for a structured access to the machine code, and a shadow memory tool to store dot values. Access to the source code is required at most for the files in which input and output variables are defined. Derivgrind's versatility comes at the price of scaling the run-time by a factor between 30 and 75, measured on a benchmark based on a numerical solver for a partial differential equation. Results of our extensive regression test suite indicate that Derivgrind produces correct results on GCC- and Clang-compiled programs, including a Python interpreter, with a small number of exceptions. While we provide a list of scenarios that Derivgrind does not handle correctly, nearly all of them are academic counterexamples or originate from highly optimized math libraries. As long as differentiating those is avoided, Derivgrind can be applied to an unprecedentedly wide range of cross-language or partially closed-source software with little integration efforts.

This paper concludes five years of AI competitions based on Legends of Code and Magic (LOCM), a small Collectible Card Game (CCG), designed with the goal of supporting research and algorithm development. The game was used in a number of events, including Community Contests on the CodinGame platform, and Strategy Card Game AI Competition at the IEEE Congress on Evolutionary Computation and IEEE Conference on Games. LOCM has been used in a number of publications related to areas such as game tree search algorithms, neural networks, evaluation functions, and CCG deckbuilding. We present the rules of the game, the history of organized competitions, and a listing of the participant and their approaches, as well as some general advice on organizing AI competitions for the research community. Although the COG 2022 edition was announced to be the last one, the game remains available and can be played using an online leaderboard arena.

Quantifying uncertainty is important for actionable predictions in real-world applications. A crucial part of predictive uncertainty quantification is the estimation of epistemic uncertainty, which is defined as an integral of the product between a divergence function and the posterior. Current methods such as Deep Ensembles or MC dropout underperform at estimating the epistemic uncertainty, since they primarily consider the posterior when sampling models. We suggest Quantification of Uncertainty with Adversarial Models (QUAM) to better estimate the epistemic uncertainty. QUAM identifies regions where the whole product under the integral is large, not just the posterior. Consequently, QUAM has lower approximation error of the epistemic uncertainty compared to previous methods. Models for which the product is large correspond to adversarial models (not adversarial examples!). Adversarial models have both a high posterior as well as a high divergence between their predictions and that of a reference model. Our experiments show that QUAM excels in capturing epistemic uncertainty for deep learning models and outperforms previous methods on challenging tasks in the vision domain.

The randomized singular value decomposition (R-SVD) is a popular sketching-based algorithm for efficiently computing the partial SVD of a large matrix. When the matrix is low-rank, the R-SVD produces its partial SVD exactly; but when the rank is large, it only yields an approximation. Motivated by applications in data science and principal component analysis (PCA), we analyze the R-SVD under a low-rank signal plus noise measurement model; specifically, when its input is a spiked random matrix. The singular values produced by the R-SVD are shown to exhibit a BBP-like phase transition: when the SNR exceeds a certain detectability threshold, that depends on the dimension reduction factor, the largest singular value is an outlier; below the threshold, no outlier emerges from the bulk of singular values. We further compute asymptotic formulas for the overlap between the ground truth signal singular vectors and the approximations produced by the R-SVD. Dimensionality reduction has the adverse affect of amplifying the noise in a highly nonlinear manner. Our results demonstrate the statistical advantage -- in both signal detection and estimation -- of the R-SVD over more naive sketched PCA variants; the advantage is especially dramatic when the sketching dimension is small. Our analysis is asymptotically exact, and substantially more fine-grained than existing operator-norm error bounds for the R-SVD, which largely fail to give meaningful error estimates in the moderate SNR regime. It applies for a broad family of sketching matrices previously considered in the literature, including Gaussian i.i.d. sketches, random projections, and the sub-sampled Hadamard transform, among others. Lastly, we derive an optimal singular value shrinker for singular values and vectors obtained through the R-SVD, which may be useful for applications in matrix denoising.

Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to their unprecedented performance in various applications. As LLMs continue to play a vital role in both research and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the society level for better understanding of their potential risks. Over the past years, significant efforts have been made to examine LLMs from various perspectives. This paper presents a comprehensive review of these evaluation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general natural language processing tasks, reasoning, medical usage, ethics, educations, natural and social sciences, agent applications, and other areas. Secondly, we answer the `where' and `how' questions by diving into the evaluation methods and benchmarks, which serve as crucial components in assessing performance of LLMs. Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that evaluation should be treated as an essential discipline to better assist the development of LLMs. We consistently maintain the related open-source materials at: //github.com/MLGroupJLU/LLM-eval-survey.

The Chinese Remainder Theorem for the integers says that every system of congruence equations is solvable as long as the system satisfies an obvious necessary condition. This statement can be generalized in a natural way to arbitrary algebraic structures using the language of Universal Algebra. In this context, an algebra is a structure of a first-order language with no relation symbols, and a congruence on an algebra is an equivalence relation on its base set compatible with its fundamental operations. A tuple of congruences of an algebra is called a Chinese Remainder tuple if every system involving them is solvable. In this article we study the complexity of deciding whether a tuple of congruences of a finite algebra is a Chinese Remainder tuple. This problem, which we denote CRT, is easily seen to lie in coNP. We prove that it is actually coNP-complete and also show that it is tractable when restricted to several well-known classes of algebras, such as vector spaces and distributive lattices. The polynomial algorithms we exhibit are made possible by purely algebraic characterizations of Chinese Remainder tuples for algebras in these classes, which constitute interesting results in their own right. Among these, an elegant characterization of Chinese Remainder tuples of finite distributive lattices stands out. Finally, we address the restriction of CRT to an arbitrary equational class $\mathcal{V}$ generated by a two-element algebra. Here we establish an (almost) dichotomy by showing that, unless $\mathcal{V}$ is the class of semilattices, the problem is either coNP-complete or tractable.

This paper presents the FormAI dataset, a large collection of 112,000 AI-generated compilable and independent C programs with vulnerability classification. We introduce a dynamic zero-shot prompting technique, constructed to spawn a diverse set of programs utilizing Large Language Models (LLMs). The dataset is generated by GPT-3.5-turbo and comprises programs with varying levels of complexity. Some programs handle complicated tasks such as network management, table games, or encryption, while others deal with simpler tasks like string manipulation. Every program is labeled with the vulnerabilities found within the source code, indicating the type, line number, and vulnerable function name. This is accomplished by employing a formal verification method using the Efficient SMT-based Bounded Model Checker (ESBMC), which performs model checking, abstract interpretation, constraint programming, and satisfiability modulo theories, to reason over safety/security properties in programs. This approach definitively detects vulnerabilities and offers a formal model known as a counterexample, thus eliminating the possibility of generating false positive reports. This property of the dataset makes it suitable for evaluating the effectiveness of various static and dynamic analysis tools. Furthermore, we have associated the identified vulnerabilities with relevant Common Weakness Enumeration (CWE) numbers. We make the source code available for the 112,000 programs, accompanied by a comprehensive list detailing the vulnerabilities detected in each individual program including location and function name, which makes the dataset ideal to train LLMs and machine learning algorithms.

We introduce DeepNash, an autonomous agent capable of learning to play the imperfect information game Stratego from scratch, up to a human expert level. Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered. This popular game has an enormous game tree on the order of $10^{535}$ nodes, i.e., $10^{175}$ times larger than that of Go. It has the additional complexity of requiring decision-making under imperfect information, similar to Texas hold'em poker, which has a significantly smaller game tree (on the order of $10^{164}$ nodes). Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome. Episodes are long, with often hundreds of moves before a player wins, and situations in Stratego can not easily be broken down into manageably-sized sub-problems as in poker. For these reasons, Stratego has been a grand challenge for the field of AI for decades, and existing AI methods barely reach an amateur level of play. DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego via self-play. The Regularised Nash Dynamics (R-NaD) algorithm, a key component of DeepNash, converges to an approximate Nash equilibrium, instead of 'cycling' around it, by directly modifying the underlying multi-agent learning dynamics. DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform, competing with human expert players.

This paper presents a succinct review of attempts in the literature to use game theory to model decision making scenarios relevant to defence applications. Game theory has been proven as a very effective tool in modelling decision making processes of intelligent agents, entities, and players. It has been used to model scenarios from diverse fields such as economics, evolutionary biology, and computer science. In defence applications, there is often a need to model and predict actions of hostile actors, and players who try to evade or out-smart each other. Modelling how the actions of competitive players shape the decision making of each other is the forte of game theory. In past decades, there have been several studies which applied different branches of game theory to model a range of defence-related scenarios. This paper provides a structured review of such attempts, and classifies existing literature in terms of the kind of warfare modelled, the types of game used, and the players involved. The presented analysis provides a concise summary about the state-of-the-art with regards to the use of game theory in defence applications, and highlights the benefits and limitations of game theory in the considered scenarios.

北京阿比特科技有限公司