亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Ancient Chinese is the essence of Chinese culture. There are several natural language processing tasks of ancient Chinese domain, such as ancient-modern Chinese translation, poem generation, and couplet generation. Previous studies usually use the supervised models which deeply rely on parallel data. However, it is difficult to obtain large-scale parallel data of ancient Chinese. In order to make full use of the more easily available monolingual ancient Chinese corpora, we release AnchiBERT, a pre-trained language model based on the architecture of BERT, which is trained on large-scale ancient Chinese corpora. We evaluate AnchiBERT on both language understanding and generation tasks, including poem classification, ancient-modern Chinese translation, poem generation, and couplet generation. The experimental results show that AnchiBERT outperforms BERT as well as the non-pretrained models and achieves state-of-the-art results in all cases.

相關內容

Though pre-trained language models such as Bert and XLNet, have rapidly advanced the state-of-the-art on many NLP tasks, they implicit semantics only relying on surface information between words in corpus. Intuitively, background knowledge influences the efficacy of understanding. Inspired by this common sense, we focus on improving model pretraining by leveraging explicit knowledge. Different from recent research that optimize pretraining model by knowledge masking strategies, we propose a simple but general method to combine explicit knowledge with pretraining. To be specific, we first match knowledge facts from knowledge graph (KG) and then add a knowledge injunction layer to transformer directly without changing its architecture. The present study seeks to find the direct impact of explicit knowledge on transformer per-training. We conduct experiments on various datasets for different downstream tasks. The experimental results show that solely by adding external knowledge to transformer can improve the learning performance on many NLP tasks.

In this work, we construct the largest dataset for multimodal pretraining in Chinese, which consists of over 1.9TB images and 292GB texts that cover a wide range of domains. We propose a cross-modal pretraining method called M6, referring to Multi-Modality to Multi-Modality Multitask Mega-transformer, for unified pretraining on the data of single modality and multiple modalities. We scale the model size up to 10 billion and 100 billion parameters, and build the largest pretrained model in Chinese. We apply the model to a series of downstream applications, and demonstrate its outstanding performance in comparison with strong baselines. Furthermore, we specifically design a downstream task of text-guided image generation, and show that the finetuned M6 can create high-quality images with high resolution and abundant details.

This paper seeks to develop a deeper understanding of the fundamental properties of neural text generations models. The study of artifacts that emerge in machine generated text as a result of modeling choices is a nascent research area. Previously, the extent and degree to which these artifacts surface in generated text has not been well studied. In the spirit of better understanding generative text models and their artifacts, we propose the new task of distinguishing which of several variants of a given model generated a piece of text, and we conduct an extensive suite of diagnostic tests to observe whether modeling choices (e.g., sampling methods, top-$k$ probabilities, model architectures, etc.) leave detectable artifacts in the text they generate. Our key finding, which is backed by a rigorous set of experiments, is that such artifacts are present and that different modeling choices can be inferred by observing the generated text alone. This suggests that neural text generators may be more sensitive to various modeling choices than previously thought.

We propose to pre-train a unified language model for both autoencoding and partially autoregressive language modeling tasks using a novel training procedure, referred to as a pseudo-masked language model (PMLM). Given an input text with masked tokens, we rely on conventional masks to learn inter-relations between corrupted tokens and context via autoencoding, and pseudo masks to learn intra-relations between masked spans via partially autoregressive modeling. With well-designed position embeddings and self-attention masks, the context encodings are reused to avoid redundant computation. Moreover, conventional masks used for autoencoding provide global masking information, so that all the position embeddings are accessible in partially autoregressive language modeling. In addition, the two tasks pre-train a unified language model as a bidirectional encoder and a sequence-to-sequence decoder, respectively. Our experiments show that the unified language models pre-trained using PMLM achieve new state-of-the-art results on a wide range of natural language understanding and generation tasks across several widely used benchmarks.

Entity and relation extraction is the necessary step in structuring medical text. However, the feature extraction ability of the bidirectional long short term memory network in the existing model does not achieve the best effect. At the same time, the language model has achieved excellent results in more and more natural language processing tasks. In this paper, we present a focused attention model for the joint entity and relation extraction task. Our model integrates well-known BERT language model into joint learning through dynamic range attention mechanism, thus improving the feature representation ability of shared parameter layer. Experimental results on coronary angiography texts collected from Shuguang Hospital show that the F1-score of named entity recognition and relation classification tasks reach 96.89% and 88.51%, which are better than state-of-the-art methods 1.65% and 1.22%, respectively.

Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm

Relation classification is an important NLP task to extract relations between entities. The state-of-the-art methods for relation classification are primarily based on Convolutional or Recurrent Neural Networks. Recently, the pre-trained BERT model achieves very successful results in many NLP classification / sequence labeling tasks. Relation classification differs from those tasks in that it relies on information of both the sentence and the two target entities. In this paper, we propose a model that both leverages the pre-trained BERT language model and incorporates information from the target entities to tackle the relation classification task. We locate the target entities and transfer the information through the pre-trained architecture and incorporate the corresponding encoding of the two entities. We achieve significant improvement over the state-of-the-art method on the SemEval-2010 task 8 relational dataset.

Pre-trained language model representations have been successful in a wide range of language understanding tasks. In this paper, we examine different strategies to integrate pre-trained representations into sequence to sequence models and apply it to neural machine translation and abstractive summarization. We find that pre-trained representations are most effective when added to the encoder network which slows inference by only 14%. Our experiments in machine translation show gains of up to 5.3 BLEU in a simulated resource-poor setup. While returns diminish with more labeled data, we still observe improvements when millions of sentence-pairs are available. Finally, on abstractive summarization we achieve a new state of the art on the full text version of CNN/DailyMail.

Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in machine learning, extracting valuable information from biomedical literature has gained popularity among researchers, and deep learning has boosted the development of effective biomedical text mining models. However, as deep learning models require a large amount of training data, applying deep learning to biomedical text mining is often unsuccessful due to the lack of training data in biomedical fields. Recent researches on training contextualized language representation models on text corpora shed light on the possibility of leveraging a large number of unannotated biomedical text corpora. We introduce BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining), which is a domain specific language representation model pre-trained on large-scale biomedical corpora. Based on the BERT architecture, BioBERT effectively transfers the knowledge from a large amount of biomedical texts to biomedical text mining models with minimal task-specific architecture modifications. While BERT shows competitive performances with previous state-of-the-art models, BioBERT significantly outperforms them on the following three representative biomedical text mining tasks: biomedical named entity recognition (0.51% absolute improvement), biomedical relation extraction (3.49% absolute improvement), and biomedical question answering (9.61% absolute improvement). We make the pre-trained weights of BioBERT freely available at //github.com/naver/biobert-pretrained, and the source code for fine-tuning BioBERT available at //github.com/dmis-lab/biobert.

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT representations can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE benchmark to 80.4% (7.6% absolute improvement), MultiNLI accuracy to 86.7 (5.6% absolute improvement) and the SQuAD v1.1 question answering Test F1 to 93.2 (1.5% absolute improvement), outperforming human performance by 2.0%.

北京阿比特科技有限公司