亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Flexible robots have advantages over rigid robots in their ability to conform physically to their environment and to form a wide variety of shapes. Sensing the force applied by or to flexible robots is useful for both navigation and manipulation tasks, but it is challenging due to the need for the sensors to withstand the robots' shape change without encumbering their functionality. Also, for robots with long or large bodies, the number of sensors required to cover the entire surface area of the robot body can be prohibitive due to high cost and complexity. We present a novel soft air pocket force sensor that is highly flexible, lightweight, relatively inexpensive, and easily scalable to various sizes. Our sensor produces a change in internal pressure that is linear with the applied force. We present results of experimental testing of how uncontrollable factors (contact location and contact area) and controllable factors (initial internal pressure, thickness, size, and number of interior seals) affect the sensitivity. We demonstrate our sensor applied to a vine robot-a soft inflatable robot that "grows" from the tip via eversion-and we show that the robot can successfully grow and steer towards an object with which it senses contact.

相關內容

Active fault tolerance is essential for robot swarms to retain long-term autonomy. Previous work on swarm fault tolerance focuses on reacting to electro-mechanical faults that are spontaneously injected into robot sensors and actuators. Resolving faults once they have manifested as failures is an inefficient approach, and there are some safety-critical scenarios in which any kind of robot failure is unacceptable. We propose a predictive approach to fault tolerance, based on the principle of preemptive maintenance, in which potential faults are autonomously detected and resolved before they manifest as failures. Our approach is shown to improve swarm performance and prevent robot failure in the cases tested.

The pursuit of long-term autonomy mandates that robotic agents must continuously adapt to their changing environments and learn to solve new tasks. Continual learning seeks to overcome the challenge of catastrophic forgetting, where learning to solve new tasks causes a model to forget previously learnt information. Prior-based continual learning methods are appealing for robotic applications as they are space efficient and typically do not increase in computational complexity as the number of tasks grows. Despite these desirable properties, prior-based approaches typically fail on important benchmarks and consequently are limited in their potential applications compared to their memory-based counterparts. We introduce Bayesian adaptive moment regularization (BAdam), a novel prior-based method that better constrains parameter growth, leading to lower catastrophic forgetting. Our method boasts a range of desirable properties for robotic applications such as being lightweight and task label-free, converging quickly, and offering calibrated uncertainty that is important for safe real-world deployment. Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments such as Split MNIST and Split FashionMNIST, and does so without relying on task labels or discrete task boundaries.

Industrial robots are designed as general-purpose hardware, which limits their ability to adapt to changing task requirements or environments. Modular robots, on the other hand, offer flexibility and can be easily customized to suit diverse needs. The morphology, i.e., the form and structure of a robot, significantly impacts the primary performance metrics acquisition cost, cycle time, and energy efficiency. However, identifying an optimal module composition for a specific task remains an open problem, presenting a substantial hurdle in developing task-tailored modular robots. Previous approaches either lack adequate exploration of the design space or the possibility to adapt to complex tasks. We propose combining a genetic algorithm with a lexicographic evaluation of solution candidates to overcome this problem and navigate search spaces exceeding those in prior work by magnitudes in the number of possible compositions. We demonstrate that our approach outperforms a state-of-the-art baseline and is able to synthesize modular robots for industrial tasks in cluttered environments.

Bipedal robots promise the ability to traverse rough terrain quickly and efficiently, and indeed, humanoid robots can now use strong ankles and careful foot placement to traverse discontinuous terrain. However, more agile underactuated bipeds have small feet and weak ankles, and must constantly adjust their planned footstep position to maintain balance. We introduce a new model-predictive footstep controller which jointly optimizes over the robot's discrete choice of stepping surface, impending footstep position sequence, ankle torque in the sagittal plane, and center of mass trajectory, to track a velocity command. The controller is formulated as a single Mixed Integer Quadratic Program (MIQP) which is solved at 50-200 Hz, depending on terrain complexity. We implement a state of the art real-time elevation mapping and convex terrain decomposition framework to inform the controller of its surroundings in the form on convex polygons representing steppable terrain. We investigate the capabilities and challenges of our approach through hardware experiments on the underactuated biped Cassie.

The integration of manipulator robots in household environments suggests a need for more predictable and human-like robot motion. This holds especially true for wheelchair-mounted assistive robots that can support the independence of people with paralysis. One method of generating naturalistic motion trajectories is via the imitation of human demonstrators. This paper explores a self-supervised imitation learning method using an autoregressive spatio-temporal graph neural network for an assistive drinking task. We address learning from diverse human motion trajectory data that were captured via wearable IMU sensors on a human arm as the action-free task demonstrations. Observed arm motion data from several participants is used to generate natural and functional drinking motion trajectories for a UR5e robot arm.

Smishing, also known as SMS phishing, is a type of fraudulent communication in which an attacker disguises SMS communications to deceive a target into providing their sensitive data. Smishing attacks use a variety of tactics; however, they have a similar goal of stealing money or personally identifying information (PII) from a victim. In response to these attacks, a wide variety of anti-smishing tools have been developed to block or filter these communications. Despite this, the number of phishing attacks continue to rise. In this paper, we developed a test bed for measuring the effectiveness of popular anti-smishing tools against fresh smishing attacks. To collect fresh smishing data, we introduce Smishtank.com, a collaborative online resource for reporting and collecting smishing data sets. The SMS messages were validated by a security expert and an in-depth qualitative analysis was performed on the collected messages to provide further insights. To compare tool effectiveness, we experimented with 20 smishing and benign messages across 3 key segments of the SMS messaging delivery ecosystem. Our results revealed significant room for improvement in all 3 areas against our smishing set. Most anti-phishing apps and bulk messaging services didn't filter smishing messages beyond the carrier blocking. The 2 apps that blocked the most smish also blocked 85-100\% of benign messages. Finally, while carriers did not block any benign messages, they were only able to reach a 25-35\% blocking rate for smishing messages. Our work provides insights into the performance of anti-smishing tools and the roles they play in the message blocking process. This paper would enable the research community and industry to be better informed on the current state of anti-smishing technology on the SMS platform.

Monocular cameras are extensively employed in indoor robotics, but their performance is limited in visual odometry, depth estimation, and related applications due to the absence of scale information.Depth estimation refers to the process of estimating a dense depth map from the corresponding input image, existing researchers mostly address this issue through deep learning-based approaches, yet their inference speed is slow, leading to poor real-time capabilities. To tackle this challenge, we propose an explicit method for rapid monocular depth recovery specifically designed for corridor environments, leveraging the principles of nonlinear optimization. We adopt the virtual camera assumption to make full use of the prior geometric features of the scene. The depth estimation problem is transformed into an optimization problem by minimizing the geometric residual. Furthermore, a novel depth plane construction technique is introduced to categorize spatial points based on their possible depths, facilitating swift depth estimation in enclosed structural scenarios, such as corridors. We also propose a new corridor dataset, named Corr\_EH\_z, which contains images as captured by the UGV camera of a variety of corridors. An exhaustive set of experiments in different corridors reveal the efficacy of the proposed algorithm.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司