亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the growing popularity of general-purpose Large Language Models (LLMs), comes a need for more global explanations of model behaviors. Concept-based explanations arise as a promising avenue for explaining high-level patterns learned by LLMs. Yet their evaluation poses unique challenges, especially due to their non-local nature and high dimensional representation in a model's hidden space. Current methods approach concepts from different perspectives, lacking a unified formalization. This makes evaluating the core measures of concepts, namely faithfulness or readability, challenging. To bridge the gap, we introduce a formal definition of concepts generalizing to diverse concept-based explanations' settings. Based on this, we quantify the faithfulness of a concept explanation via perturbation. We ensure adequate perturbation in the high-dimensional space for different concepts via an optimization problem. Readability is approximated via an automatic and deterministic measure, quantifying the coherence of patterns that maximally activate a concept while aligning with human understanding. Finally, based on measurement theory, we apply a meta-evaluation method for evaluating these measures, generalizable to other types of explanations or tasks as well. Extensive experimental analysis has been conducted to inform the selection of explanation evaluation measures.

相關內容

 一個(ge)旨在(zai)提(ti)升互聯網閱(yue)讀(du)體(ti)驗的工(gong)具。

This paper proposes an automated framework for efficient application profiling and training of Machine Learning (ML) performance models, composed of two parts: OSCAR-P and aMLLibrary. OSCAR-P is an auto-profiling tool designed to automatically test serverless application workflows running on multiple hardware and node combinations in cloud and edge environments. OSCAR-P obtains relevant profiling information on the execution time of the individual application components. These data are later used by aMLLibrary to train ML-based performance models. This makes it possible to predict the performance of applications on unseen configurations. We test our framework on clusters with different architectures (x86 and arm64) and workloads, considering multi-component use-case applications. This extensive experimental campaign proves the efficiency of OSCAR-P and aMLLibrary, significantly reducing the time needed for the application profiling, data collection, and data processing. The preliminary results obtained on the ML performance models accuracy show a Mean Absolute Percentage Error lower than 30% in all the considered scenarios.

This paper presents a tutorial and review of SRAM-based Compute-in-Memory (CIM) circuits, with a focus on both Digital CIM (DCIM) and Analog CIM (ACIM) implementations. We explore the fundamental concepts, architectures, and operational principles of CIM technology. The review compares DCIM and ACIM approaches, examining their respective advantages and challenges. DCIM offers high computational precision and process scaling benefits, while ACIM provides superior power and area efficiency, particularly for medium-precision applications. We analyze various ACIM implementations, including current-based, time-based, and charge-based approaches, with a detailed look at charge-based ACIMs. The paper also discusses emerging hybrid CIM architectures that combine DCIM and ACIM to leverage the strengths of both approaches.

The datasets used for Deep Neural Network training (e.g., ImageNet, MSCOCO, etc.) are often manually balanced across categories (classes) to facilitate learning of all the categories. This curation process is often expensive and requires throwing away precious annotated data to balance the frequency across classes. This is because the distribution of data in the world (e.g., internet, etc.) significantly differs from the well-curated datasets and is often over-populated with samples from common categories. The algorithms designed for well-curated datasets perform suboptimally when used to learn from imperfect datasets with long-tailed imbalances and distribution shifts. For deep models to be widely used, getting away with the costly curation process by developing robust algorithms that can learn from real-world data distribution is necessary. Toward this goal, we develop practical algorithms for Deep Neural Networks that can learn from limited and imperfect data present in the real world. These works are divided into four segments, each covering a scenario of learning from limited or imperfect data. The first part of the works focuses on Learning Generative Models for Long-Tail Data, where we mitigate the mode-collapse for tail (minority) classes and enable diverse aesthetic image generations as head (majority) classes. In the second part, we enable effective generalization on tail classes through Inductive Regularization schemes, which allow tail classes to generalize as the head classes without enforcing explicit generation of images. In the third part, we develop algorithms for Optimizing Relevant Metrics compared to the average accuracy for learning from long-tailed data with limited annotation (semi-supervised), followed by the fourth part, which focuses on the effective domain adaptation of the model to various domains with zero to very few labeled samples.

In the Fully Sharded Data Parallel (FSDP) training pipeline, collective operations can be interleaved to maximize the communication/computation overlap. In this scenario, outstanding operations such as Allgather and Reduce-Scatter can compete for the injection bandwidth and create pipeline bubbles. To address this problem, we propose a novel bandwidth-optimal Allgather collective algorithm that leverages hardware multicast. We use multicast to build a constant-time reliable Broadcast protocol, a building block for constructing an optimal Allgather schedule. Our Allgather algorithm achieves 2x traffic reduction on a 188-node testbed. To free the host side from running the protocol, we employ SmartNIC offloading. We extract the parallelism in our Allgather algorithm and map it to a SmartNIC specialized for hiding the cost of data movement. We show that our SmartNIC-offloaded collective progress engine can scale to the next generation of 1.6 Tbit/s links.

Selective state space models (SSMs) represented by Mamba have demonstrated their computational efficiency and promising outcomes in various tasks, including automatic speech recognition (ASR). Mamba has been applied to ASR task with the attention-based encoder-decoder framework, where the cross-attention mechanism between encoder and decoder remains. This paper explores the capability of Mamba as the decoder-only architecture in ASR task. Our MAmba-based DEcoder-ONly approach (MADEON) consists of a single decoder that takes speech tokens as a condition and predicts text tokens in an autoregressive manner. To enhance MADEON, we further propose speech prefixing that performs bidirectional processing on speech tokens, which enriches the contextual information in the hidden states. Our experiments show that MADEON significantly outperforms a non-selective SSM. The combination of speech prefixing and the recently proposed Mamba-2 yields comparable performance to Transformer-based models on large datasets.

The ever-improving quality of LLMs has fueled the growth of a diverse range of downstream tasks, leading to an increased demand for AI automation and a burgeoning interest in developing foundation model (FM)-based autonomous agents. As AI agent systems tackle more complex tasks and evolve, they involve a wider range of stakeholders, including agent users, agentic system developers and deployers, and AI model developers. These systems also integrate multiple components such as AI agent workflows, RAG pipelines, prompt management, agent capabilities, and observability features. In this case, obtaining reliable outputs and answers from these agents remains challenging, necessitating a dependable execution process and end-to-end observability solutions. To build reliable AI agents and LLM applications, it is essential to shift towards designing AgentOps platforms that ensure observability and traceability across the entire development-to-production life-cycle. To this end, we conducted a rapid review and identified relevant AgentOps tools from the agentic ecosystem. Based on this review, we provide an overview of the essential features of AgentOps and propose a comprehensive overview of observability data/traceable artifacts across the agent production life-cycle. Our findings provide a systematic overview of the current AgentOps landscape, emphasizing the critical role of observability/traceability in enhancing the reliability of autonomous agent systems.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

The new era of technology has brought us to the point where it is convenient for people to share their opinions over an abundance of platforms. These platforms have a provision for the users to express themselves in multiple forms of representations, including text, images, videos, and audio. This, however, makes it difficult for users to obtain all the key information about a topic, making the task of automatic multi-modal summarization (MMS) essential. In this paper, we present a comprehensive survey of the existing research in the area of MMS.

Search in social networks such as Facebook poses different challenges than in classical web search: besides the query text, it is important to take into account the searcher's context to provide relevant results. Their social graph is an integral part of this context and is a unique aspect of Facebook search. While embedding-based retrieval (EBR) has been applied in eb search engines for years, Facebook search was still mainly based on a Boolean matching model. In this paper, we discuss the techniques for applying EBR to a Facebook Search system. We introduce the unified embedding framework developed to model semantic embeddings for personalized search, and the system to serve embedding-based retrieval in a typical search system based on an inverted index. We discuss various tricks and experiences on end-to-end optimization of the whole system, including ANN parameter tuning and full-stack optimization. Finally, we present our progress on two selected advanced topics about modeling. We evaluated EBR on verticals for Facebook Search with significant metrics gains observed in online A/B experiments. We believe this paper will provide useful insights and experiences to help people on developing embedding-based retrieval systems in search engines.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司