亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A sequential detection and tracking (SDT) approach is proposed for detection and tracking of very low signal-to-noise (SNR) objects. The proposed approach is compared with two existing particle filter track-before-track (TBD) methods. It is shown that the former outperforms the latter. A conventional detection and tracking (CDT) approach, based on one-data-frame thresholding, is considered as a benchmark for comparison. Simulations demonstrate the performance.

相關內容

TBD:IEEE Transactions on Big Data。 Explanation:IEEE大數據事務(處理)。 Publisher:IEEE。 SIT:

An adequate fusion of the most significant salient information from multiple input channels is essential for many aerial imaging tasks. While multispectral recordings reveal features in various spectral ranges, synthetic aperture sensing makes occluded features visible. We present a first and hybrid (model- and learning-based) architecture for fusing the most significant features from conventional aerial images with the ones from integral aerial images that are the result of synthetic aperture sensing for removing occlusion. It combines the environment's spatial references with features of unoccluded targets that would normally be hidden by dense vegetation. Our method outperforms state-of-the-art two-channel and multi-channel fusion approaches visually and quantitatively in common metrics, such as mutual information, visual information fidelity, and peak signal-to-noise ratio. The proposed model does not require manually tuned parameters, can be extended to an arbitrary number and arbitrary combinations of spectral channels, and is reconfigurable for addressing different use cases. We demonstrate examples for search and rescue, wildfire detection, and wildlife observation.

The persistent homology transform (PHT) represents a shape with a multiset of persistence diagrams parameterized by the sphere of directions in the ambient space. In this work, we describe a finite set of diagrams that discretize the PHT such that it faithfully represents the underlying shape. We provide a discretization that is exponential in the dimension of the shape. Moreover, we show that this discretization is stable with respect to various perturbations and we provide an algorithm for computing the discretization. Our approach relies only on knowing the heights and dimensions of topological events, which means that it can be adapted to provide discretizations of other dimension-returning topological transforms, including the Betti function transform. With mild alterations, we also adapt our methods to faithfully discretize the Euler characteristic function transform.

Graph-based fraud detection (GFD) can be regarded as a challenging semi-supervised node binary classification task. In recent years, Graph Neural Networks (GNN) have been widely applied to GFD, characterizing the anomalous possibility of a node by aggregating neighbor information. However, fraud graphs are inherently heterophilic, thus most of GNNs perform poorly due to their assumption of homophily. In addition, due to the existence of heterophily and class imbalance problem, the existing models do not fully utilize the precious node label information. To address the above issues, this paper proposes a semi-supervised GNN-based fraud detector SEC-GFD. This detector includes a hybrid filtering module and a local environmental constraint module, the two modules are utilized to solve heterophily and label utilization problem respectively. The first module starts from the perspective of the spectral domain, and solves the heterophily problem to a certain extent. Specifically, it divides the spectrum into various mixed-frequency bands based on the correlation between spectrum energy distribution and heterophily. Then in order to make full use of the node label information, a local environmental constraint module is adaptively designed. The comprehensive experimental results on four real-world fraud detection datasets denote that SEC-GFD outperforms other competitive graph-based fraud detectors. We release our code at //github.com/Sunxkissed/SEC-GFD.

An algorithm effects a causal representation of relations between features and labels in the human's perception. Such a representation might conflict with the human's prior belief. Explanations can direct the human's attention to the conflicting feature and away from other relevant features. This leads to causal overattribution and may adversely affect the human's information processing. In a field experiment we implemented an XGBoost-trained model as a decision-making aid for counselors at a public employment service to predict candidates' risk of long-term unemployment. The treatment group of counselors was also provided with SHAP. The results show that the quality of the human's decision-making is worse when a feature on which the human holds a conflicting prior belief is displayed as part of the explanation.

Mixture of Experts (MoE) models have emerged as a primary solution for reducing the computational cost of Large Language Models. In this work, we analyze their scaling properties, incorporating an expanded range of variables. Specifically, we introduce a new hyperparameter, granularity, whose adjustment enables precise control over the size of the experts. Building on this, we establish scaling laws for fine-grained MoE, taking into account the number of training tokens, model size, and granularity. Leveraging these laws, we derive the optimal training configuration for a given computational budget. Our findings not only show that MoE models consistently outperform dense Transformers but also highlight that the efficiency gap between dense and MoE models widens as we scale up the model size and training budget. Furthermore, we demonstrate that the common practice of setting the size of experts in MoE to mirror the feed-forward layer is not optimal at almost any computational budget.

Order-invariant first-order logic is an extension of first-order logic (FO) where formulae can make use of a linear order on the structures, under the proviso that they are order-invariant, i.e. that their truth value is the same for all linear orders. We continue the study of the two-variable fragment of order-invariant first-order logic initiated by Zeume and Harwath, and study its complexity and expressive power. We first establish coNExpTime-completeness for the problem of deciding if a given two-variable formula is order-invariant, which tightens and significantly simplifies the coN2ExpTime proof by Zeume and Harwath. Second, we address the question of whether every property expressible in order-invariant two-variable logic is also expressible in first-order logic without the use of a linear order. While we were not able to provide a satisfactory answer to the question, we suspect that the answer is ``no''. To justify our claim, we present a class of finite tree-like structures (of unbounded degree) in which a relaxed variant of order-invariant two-variable FO expresses properties that are not definable in plain FO. On the other hand, we show that if one restricts their attention to classes of structures of bounded degree, then the expressive power of order-invariant two-variable FO is contained within FO.

Gender-neutral translation (GNT) that avoids biased and undue binary assumptions is a pivotal challenge for the creation of more inclusive translation technologies. Advancements for this task in Machine Translation (MT), however, are hindered by the lack of dedicated parallel data, which are necessary to adapt MT systems to satisfy neutral constraints. For such a scenario, large language models offer hitherto unforeseen possibilities, as they come with the distinct advantage of being versatile in various (sub)tasks when provided with explicit instructions. In this paper, we explore this potential to automate GNT by comparing MT with the popular GPT-4 model. Through extensive manual analyses, our study empirically reveals the inherent limitations of current MT systems in generating GNTs and provides valuable insights into the potential and challenges associated with prompting for neutrality.

Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司