亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In many classification applications, the prediction of a deep neural network (DNN) based classifier needs to be accompanied with some confidence indication. Two popular post-processing approaches for that aim are: 1) calibration: modifying the classifier's softmax values such that their maximum (associated with the prediction) better estimates the correctness probability; and 2) conformal prediction (CP): devising a score (based on the softmax values) from which a set of predictions with theoretically guaranteed marginal coverage of the correct class is produced. While in practice both types of indications can be desired, so far the interplay between them has not been investigated. Toward filling this gap, in this paper we study the effect of temperature scaling, arguably the most common calibration technique, on prominent CP methods. We start with an extensive empirical study that among other insights shows that, surprisingly, calibration has a detrimental effect on popular adaptive CP methods: it frequently leads to larger prediction sets. Then, we turn to theoretically analyze this behavior. We reveal several mathematical properties of the procedure, according to which we provide a reasoning for the phenomenon. Our study suggests that it may be worthwhile to utilize adaptive CP methods, chosen for their enhanced conditional coverage, based on softmax values prior to (or after canceling) temperature scaling calibration.

相關內容

這是第25屆年度會議,討論有約束計算的所有方面,包括理論、算法、環境、語言、模型、系統和應用,如決策、資源分配、調度、配置和規劃。為了紀念25周年,吉恩·弗洛伊德創作了一本“虛擬卷”來慶祝這個系列會議。信息可以在這里找到。約束編程協會有本系列中以前的會議列表。CP 2019計劃將包括展示關于約束技術的高質量科學論文。除了通常的技術軌道外,CP 2019年會議還將有主題軌道。每個賽道都有一個專門的小組委員會,以確保有能力的評審員將審查這些領域的人提交的論文。 官網鏈接: · 泛化理論 · MoDELS · 可辨認的 · Performer ·
2024 年 3 月 20 日

Machine learning methods can be a valuable aid in the scientific process, but they need to face challenging settings where data come from inhomogeneous experimental conditions. Recent meta-learning methods have made significant progress in multi-task learning, but they rely on black-box neural networks, resulting in high computational costs and limited interpretability. Leveraging the structure of the learning problem, we argue that multi-environment generalization can be achieved using a simpler learning model, with an affine structure with respect to the learning task. Crucially, we prove that this architecture can identify the physical parameters of the system, enabling interpreable learning. We demonstrate the competitive generalization performance and the low computational cost of our method by comparing it to state-of-the-art algorithms on physical systems, ranging from toy models to complex, non-analytical systems. The interpretability of our method is illustrated with original applications to physical-parameter-induced adaptation and to adaptive control.

In settings with interference, researchers commonly define estimands using exposure mappings to summarize neighborhood variation in treatment assignments. This paper studies the causal interpretation of these estimands under weak restrictions on interference. We demonstrate that the estimands can exhibit unpalatable sign reversals under conventional identification conditions. This motivates the formulation of sign preservation criteria for causal interpretability. To satisfy preferred criteria, it is necessary to impose restrictions on interference, either in potential outcomes or selection into treatment. We provide sufficient conditions and show that they can be satisfied by nonparametric models with interference in both the outcome and selection stages.

Game-theoretic interactions with AI agents could differ from traditional human-human interactions in various ways. One such difference is that it may be possible to simulate an AI agent (for example because its source code is known), which allows others to accurately predict the agent's actions. This could lower the bar for trust and cooperation. In this paper, we formalize games in which one player can simulate another at a cost. We first derive some basic properties of such games and then prove a number of results for them, including: (1) introducing simulation into generic-payoff normal-form games makes them easier to solve; (2) if the only obstacle to cooperation is a lack of trust in the possibly-simulated agent, simulation enables equilibria that improve the outcome for both agents; and however (3) there are settings where introducing simulation results in strictly worse outcomes for both players.

Neural networks that process the parameters of other neural networks find applications in domains as diverse as classifying implicit neural representations, generating neural network weights, and predicting generalization errors. However, existing approaches either overlook the inherent permutation symmetry in the neural network or rely on intricate weight-sharing patterns to achieve equivariance, while ignoring the impact of the network architecture itself. In this work, we propose to represent neural networks as computational graphs of parameters, which allows us to harness powerful graph neural networks and transformers that preserve permutation symmetry. Consequently, our approach enables a single model to encode neural computational graphs with diverse architectures. We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations, predicting generalization performance, and learning to optimize, while consistently outperforming state-of-the-art methods. The source code is open-sourced at //github.com/mkofinas/neural-graphs.

What is learned by sophisticated neural network agents such as AlphaZero? This question is of both scientific and practical interest. If the representations of strong neural networks bear no resemblance to human concepts, our ability to understand faithful explanations of their decisions will be restricted, ultimately limiting what we can achieve with neural network interpretability. In this work we provide evidence that human knowledge is acquired by the AlphaZero neural network as it trains on the game of chess. By probing for a broad range of human chess concepts we show when and where these concepts are represented in the AlphaZero network. We also provide a behavioural analysis focusing on opening play, including qualitative analysis from chess Grandmaster Vladimir Kramnik. Finally, we carry out a preliminary investigation looking at the low-level details of AlphaZero's representations, and make the resulting behavioural and representational analyses available online.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Attention Model has now become an important concept in neural networks that has been researched within diverse application domains. This survey provides a structured and comprehensive overview of the developments in modeling attention. In particular, we propose a taxonomy which groups existing techniques into coherent categories. We review salient neural architectures in which attention has been incorporated, and discuss applications in which modeling attention has shown a significant impact. Finally, we also describe how attention has been used to improve the interpretability of neural networks. We hope this survey will provide a succinct introduction to attention models and guide practitioners while developing approaches for their applications.

Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.

Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.

北京阿比特科技有限公司