亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a new local-search algorithm for the $k$-median clustering problem. We show that local optima for this algorithm give a $(2.836+\epsilon)$-approximation; our result improves upon the $(3+\epsilon)$-approximate local-search algorithm of Arya et al. [STOC 01]. Moreover, a computer-aided analysis of a natural extension suggests that this approach may lead to an improvement over the best-known approximation guarantee for the problem. The new ingredient in our algorithm is the use of a potential function based on both the closest and second-closest facilities to each client. Specifically, the potential is the sum over all clients, of the distance of the client to its closest facility, plus (a small constant times) the truncated distance to its second-closest facility. We move from one solution to another only if the latter can be obtained by swapping a constant number of facilities, and has a smaller potential than the former. This refined potential allows us to avoid the bad local optima given by Arya et al. for the local-search algorithm based only on the cost of the solution.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

We study the parameterized complexity of various classic vertex-deletion problems such as Odd cycle transversal, Vertex planarization, and Chordal vertex deletion under hybrid parameterizations. Existing FPT algorithms for these problems either focus on the parameterization by solution size, detecting solutions of size $k$ in time $f(k) \cdot n^{O(1)}$, or width parameterizations, finding arbitrarily large optimal solutions in time $f(w) \cdot n^{O(1)}$ for some width measure $w$ like treewidth. We unify these lines of research by presenting FPT algorithms for parameterizations that can simultaneously be arbitrarily much smaller than the solution size and the treewidth. We consider two classes of parameterizations which are relaxations of either treedepth of treewidth. They are related to graph decompositions in which subgraphs that belong to a target class H (e.g., bipartite or planar) are considered simple. First, we present a framework for computing approximately optimal decompositions for miscellaneous classes H. Namely, if the cost of an optimal decomposition is $k$, we show how to find a decomposition of cost $k^{O(1)}$ in time $f(k) \cdot n^{O(1)}$. This is applicable to any graph class H for which the corresponding vertex-deletion problem admits a constant-factor approximation algorithm or an FPT algorithm paramaterized by the solution size. Secondly, we exploit the constructed decompositions for solving vertex-deletion problems by extending ideas from algorithms using iterative compression and the finite state property. For the three mentioned vertex-deletion problems, and all problems which can be formulated as hitting a finite set of connected forbidden (a) minors or (b) (induced) subgraphs, we obtain FPT algorithms with respect to both studied parameterizations.

We show the $O(\log n)$ time extract minimum function of efficient priority queues can be generalized to the extraction of the $k$ smallest elements in $O(k \log(n/k))$ time (we define $\log(x)$ as $\max(\log_2(x), 1)$.), which we prove optimal for comparison-based priority queues with $o(\log n)$ time insertion. We show heap-ordered tree selection (Kaplan et al., SOSA '19) can be applied on the heap-ordered trees of the classic Fibonacci heap and Brodal queue, in $O(k \log(n/k))$ amortized and worst-case time, respectively. We additionally show the deletion of $k$ elements or selection without extraction can be performed on both heaps, also in $O(k \log(n/k))$ time. Surprisingly, all operations are possible with no modifications to the original Fibonacci heap and Brodal queue data structures. We then apply the result to lazy search trees (Sandlund & Wild, FOCS '20), creating a new interval data structure based on selectable heaps. This gives optimal $O(B+n)$ time lazy search tree performance, lowering insertion complexity into a gap $\Delta_i$ from $O(\log(n/|\Delta_i|) + \log \log n)$ to $O(\log(n/|\Delta_i|))$ time. An $O(1)$ time merge operation is also made possible when used as a priority queue, among other situations. If Brodal queues are used, all runtimes of the lazy search tree can be made worst-case.

In this paper, we consider the distributed optimization problem where $n$ agents, each possessing a local cost function, collaboratively minimize the average of the local cost functions over a connected network. To solve the problem, we propose a distributed random reshuffling (D-RR) algorithm that combines the classical distributed gradient descent (DGD) method and Random Reshuffling (RR). We show that D-RR inherits the superiority of RR for both smooth strongly convex and smooth nonconvex objective functions. In particular, for smooth strongly convex objective functions, D-RR achieves $\mathcal{O}(1/T^2)$ rate of convergence (here, $T$ counts the total number of iterations) in terms of the squared distance between the iterate and the unique minimizer. When the objective function is assumed to be smooth nonconvex and has Lipschitz continuous component functions, we show that D-RR drives the squared norm of gradient to $0$ at a rate of $\mathcal{O}(1/T^{2/3})$. These convergence results match those of centralized RR (up to constant factors).

In this paper, we investigate local permutation tests for testing conditional independence between two random vectors $X$ and $Y$ given $Z$. The local permutation test determines the significance of a test statistic by locally shuffling samples which share similar values of the conditioning variables $Z$, and it forms a natural extension of the usual permutation approach for unconditional independence testing. Despite its simplicity and empirical support, the theoretical underpinnings of the local permutation test remain unclear. Motivated by this gap, this paper aims to establish theoretical foundations of local permutation tests with a particular focus on binning-based statistics. We start by revisiting the hardness of conditional independence testing and provide an upper bound for the power of any valid conditional independence test, which holds when the probability of observing collisions in $Z$ is small. This negative result naturally motivates us to impose additional restrictions on the possible distributions under the null and alternate. To this end, we focus our attention on certain classes of smooth distributions and identify provably tight conditions under which the local permutation method is universally valid, i.e. it is valid when applied to any (binning-based) test statistic. To complement this result on type I error control, we also show that in some cases, a binning-based statistic calibrated via the local permutation method can achieve minimax optimal power. We also introduce a double-binning permutation strategy, which yields a valid test over less smooth null distributions than the typical single-binning method without compromising much power. Finally, we present simulation results to support our theoretical findings.

In this work, we present a new simple way to encode/decode messages transmitted via a noisy channel and protected against errors by the Hamming method. We also propose a fast and efficient algorithm for the encoding and the decoding process which do not use neither the generator matrix nor the parity-check matrix of the Hamming code.

$\newcommand{\Emph}[1]{{\it{#1}}} \newcommand{\FF}{\mathcal{F}}\newcommand{\region}{\mathsf{r}}\newcommand{\restrictY}[2]{#1 \cap {#2}}$For a set of points $P \subseteq \mathbb{R}^2$, and a family of regions $\FF$, a $\Emph{local~t-spanner}$ of $P$, is a sparse graph $G$ over $P$, such that, for any region $\region \in \FF$, the subgraph restricted to $\region$, denoted by $\restrictY{G}{\region} = G_{P \cap \region}$, is a $t$-spanner for all the points of $\region \cap P$. We present algorithms for the construction of local spanners with respect to several families of regions, such as homothets of a convex region. Unfortunately, the number of edges in the resulting graph depends logarithmically on the spread of the input point set. We prove that this dependency can not be removed, thus settling an open problem raised by Abam and Borouny. We also show improved constructions (with no dependency on the spread) of local spanners for fat triangles, and regular $k$-gons. In particular, this improves over the known construction for axis parallel squares. We also study a somewhat weaker notion of local spanner where one allows to shrink the region a "bit". Any spanner is a weak local spanner if the shrinking is proportional to the diameter. Surprisingly, we show a near linear size construction of a weak spanner for axis-parallel rectangles, where the shrinkage is $\Emph{multiplicative}$.

We study the off-policy evaluation (OPE) problem in reinforcement learning with linear function approximation, which aims to estimate the value function of a target policy based on the offline data collected by a behavior policy. We propose to incorporate the variance information of the value function to improve the sample efficiency of OPE. More specifically, for time-inhomogeneous episodic linear Markov decision processes (MDPs), we propose an algorithm, VA-OPE, which uses the estimated variance of the value function to reweight the Bellman residual in Fitted Q-Iteration. We show that our algorithm achieves a tighter error bound than the best-known result. We also provide a fine-grained characterization of the distribution shift between the behavior policy and the target policy. Extensive numerical experiments corroborate our theory.

Many-user MAC is an important model for understanding energy efficiency of massive random access in 5G and beyond. Introduced in Polyanskiy'2017 for the AWGN channel, subsequent works have provided improved bounds on the asymptotic minimum energy-per-bit required to achieve a target per-user error at a given user density and payload, going beyond the AWGN setting. The best known rigorous bounds use spatially coupled codes along with the optimal AMP algorithm. But these bounds are infeasible to compute beyond a few (around 10) bits of payload. In this paper, we provide new achievability bounds for the many-user AWGN and quasi-static Rayleigh fading MACs using the spatially coupled codebook design along with a scalar AMP algorithm. The obtained bounds are computable even up to 100 bits and outperform the previous ones at this payload.

In this paper we discuss policy iteration methods for approximate solution of a finite-state discounted Markov decision problem, with a focus on feature-based aggregation methods and their connection with deep reinforcement learning schemes. We introduce features of the states of the original problem, and we formulate a smaller "aggregate" Markov decision problem, whose states relate to the features. The optimal cost function of the aggregate problem, a nonlinear function of the features, serves as an architecture for approximation in value space of the optimal cost function or the cost functions of policies of the original problem. We discuss properties and possible implementations of this type of aggregation, including a new approach to approximate policy iteration. In this approach the policy improvement operation combines feature-based aggregation with reinforcement learning based on deep neural networks, which is used to obtain the needed features. We argue that the cost function of a policy may be approximated much more accurately by the nonlinear function of the features provided by aggregation, than by the linear function of the features provided by deep reinforcement learning, thereby potentially leading to more effective policy improvement.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

北京阿比特科技有限公司