In data assimilation, an ensemble provides a nonintrusive way to evolve a probability density described by a nonlinear prediction model. Although a large ensemble size is required for statistical accuracy, the ensemble size is typically limited to a small number due to the computational cost of running the prediction model, which leads to a sampling error. Several methods, such as localization, exist to mitigate the sampling error, often requiring problem-dependent fine-tuning and design. This work introduces another sampling error mitigation method using a smoothness constraint in the Fourier space. In particular, this work smoothes out the spectrum of the system to increase the stability and accuracy even under a small ensemble size. The efficacy of the new idea is validated through a suite of stringent test problems, including Lorenz 96 and Kuramoto-Sivashinsky turbulence models.
Multiple imputation (MI) models can be improved by including auxiliary covariates (AC), but their performance in high-dimensional data is not well understood. We aimed to develop and compare high-dimensional MI (HDMI) approaches using structured and natural language processing (NLP)-derived AC in studies with partially observed confounders. We conducted a plasmode simulation study using data from opioid vs. non-steroidal anti-inflammatory drug (NSAID) initiators (X) with observed serum creatinine labs (Z2) and time-to-acute kidney injury as outcome. We simulated 100 cohorts with a null treatment effect, including X, Z2, atrial fibrillation (U), and 13 other investigator-derived confounders (Z1) in the outcome generation. We then imposed missingness (MZ2) on 50% of Z2 measurements as a function of Z2 and U and created different HDMI candidate AC using structured and NLP-derived features. We mimicked scenarios where U was unobserved by omitting it from all AC candidate sets. Using LASSO, we data-adaptively selected HDMI covariates associated with Z2 and MZ2 for MI, and with U to include in propensity score models. The treatment effect was estimated following propensity score matching in MI datasets and we benchmarked HDMI approaches against a baseline imputation and complete case analysis with Z1 only. HDMI using claims data showed the lowest bias (0.072). Combining claims and sentence embeddings led to an improvement in the efficiency displaying the lowest root-mean-squared-error (0.173) and coverage (94%). NLP-derived AC alone did not perform better than baseline MI. HDMI approaches may decrease bias in studies with partially observed confounders where missingness depends on unobserved factors.
Robust optimisation is a well-established framework for optimising functions in the presence of uncertainty. The inherent goal of this problem is to identify a collection of inputs whose outputs are both desirable for the decision maker, whilst also being robust to the underlying uncertainties in the problem. In this work, we study the multi-objective extension of this problem from a computational standpoint. We identify that the majority of all robust multi-objective algorithms rely on two key operations: robustification and scalarisation. Robustification refers to the strategy that is used to marginalise over the uncertainty in the problem. Whilst scalarisation refers to the procedure that is used to encode the relative importance of each objective. As these operations are not necessarily commutative, the order that they are performed in has an impact on the resulting solutions that are identified and the final decisions that are made. This work aims to give an exposition on the philosophical differences between these two operations and highlight when one should opt for one ordering over the other. As part of our analysis, we showcase how many existing risk concepts can be easily integrated into the specification and solution of a robust multi-objective optimisation problem. Besides this, we also demonstrate how one can principally define the notion of a robust Pareto front and a robust performance metric based on our robustify and scalarise methodology. To illustrate the efficacy of these new ideas, we present two insightful numerical case studies which are based on real-world data sets.
One of the main theoretical challenges in learning dynamical systems from data is providing upper bounds on the generalization error, that is, the difference between the expected prediction error and the empirical prediction error measured on some finite sample. In machine learning, a popular class of such bounds are the so-called Probably Approximately Correct (PAC) bounds. In this paper, we derive a PAC bound for stable continuous-time linear parameter-varying (LPV) systems. Our bound depends on the H2 norm of the chosen class of the LPV systems, but does not depend on the time interval for which the signals are considered.
Missing values have been thoroughly analyzed in the context of linear models, where the final aim is to build coefficient estimates. However, estimating coefficients does not directly solve the problem of prediction with missing entries: a manner to address empty components must be designed. Major approaches to deal with prediction with missing values are empirically driven and can be decomposed into two families: imputation (filling in empty fields) and pattern-by-pattern prediction, where a predictor is built on each missing pattern. Unfortunately, most simple imputation techniques used in practice (as constant imputation) are not consistent when combined with linear models. In this paper, we focus on the more flexible pattern-by-pattern approaches and study their predictive performances on Missing Completely At Random (MCAR) data. We first show that a pattern-by-pattern logistic regression model is intrinsically ill-defined, implying that even classical logistic regression is impossible to apply to missing data. We then analyze the perceptron model and show how the linear separability property extends to partially-observed inputs. Finally, we use the Linear Discriminant Analysis to prove that pattern-by-pattern LDA is consistent in a high-dimensional regime. We refine our analysis to more complex MNAR data.
Deflation techniques are typically used to shift isolated clusters of small eigenvalues in order to obtain a tighter distribution and a smaller condition number. Such changes induce a positive effect in the convergence behavior of Krylov subspace methods, which are among the most popular iterative solvers for large sparse linear systems. We develop a deflation strategy for symmetric saddle point matrices by taking advantage of their underlying block structure. The vectors used for deflation come from an elliptic singular value decomposition relying on the generalized Golub-Kahan bidiagonalization process. The block targeted by deflation is the off-diagonal one since it features a problematic singular value distribution for certain applications. One example is the Stokes flow in elongated channels, where the off-diagonal block has several small, isolated singular values, depending on the length of the channel. Applying deflation to specific parts of the saddle point system is important when using solvers such as CRAIG, which operates on individual blocks rather than the whole system. The theory is developed by extending the existing framework for deflating square matrices before applying a Krylov subspace method like MINRES. Numerical experiments confirm the merits of our strategy and lead to interesting questions about using approximate vectors for deflation.
We extend the scope of a recently introduced dependence coefficient between a scalar response $Y$ and a multivariate covariate $X$ to the case where $X$ takes values in a general metric space. Particular attention is paid to the case where $X$ is a curve. While on the population level, this extension is straight forward, the asymptotic behavior of the estimator we consider is delicate. It crucially depends on the nearest neighbor structure of the infinite-dimensional covariate sample, where deterministic bounds on the degrees of the nearest neighbor graphs available in multivariate settings do no longer exist. The main contribution of this paper is to give some insight into this matter and to advise a way how to overcome the problem for our purposes. As an important application of our results, we consider an independence test.
Popular regularizers with non-differentiable penalties, such as Lasso, Elastic Net, Generalized Lasso, or SLOPE, reduce the dimension of the parameter space by inducing sparsity or clustering in the estimators' coordinates. In this paper, we focus on linear regression and explore the asymptotic distributions of the resulting low-dimensional patterns when the number of regressors $p$ is fixed, the number of observations $n$ goes to infinity, and the penalty function increases at the rate of $\sqrt{n}$. While the asymptotic distribution of the rescaled estimation error can be derived by relatively standard arguments, the convergence of the pattern does not simply follow from the convergence in distribution, and requires a careful and separate treatment. For this purpose, we use the Hausdorff distance as a suitable mode of convergence for subdifferentials, resulting in the desired pattern convergence. Furthermore, we derive the exact limiting probability of recovering the true model pattern. This probability goes to 1 if and only if the penalty scaling constant diverges to infinity and the regularizer-specific asymptotic irrepresentability condition is satisfied. We then propose simple two-step procedures that asymptotically recover the model patterns, irrespective whether the irrepresentability condition holds. Interestingly, our theory shows that Fused Lasso cannot reliably recover its own clustering pattern, even for independent regressors. It also demonstrates how this problem can be resolved by ``concavifying'' the Fused Lasso penalty coefficients. Additionally, sampling from the asymptotic error distribution facilitates comparisons between different regularizers. We provide short simulation studies showcasing an illustrative comparison between the asymptotic properties of Lasso, Fused Lasso, and SLOPE.
The Bayesian evidence, crucial ingredient for model selection, is arguably the most important quantity in Bayesian data analysis: at the same time, however, it is also one of the most difficult to compute. In this paper we present a hierarchical method that leverages on a multivariate normalised approximant for the posterior probability density to infer the evidence for a model in a hierarchical fashion using a set of posterior samples drawn using an arbitrary sampling scheme.
We study stochastic approximation procedures for approximately solving a $d$-dimensional linear fixed point equation based on observing a trajectory of length $n$ from an ergodic Markov chain. We first exhibit a non-asymptotic bound of the order $t_{\mathrm{mix}} \tfrac{d}{n}$ on the squared error of the last iterate of a standard scheme, where $t_{\mathrm{mix}}$ is a mixing time. We then prove a non-asymptotic instance-dependent bound on a suitably averaged sequence of iterates, with a leading term that matches the local asymptotic minimax limit, including sharp dependence on the parameters $(d, t_{\mathrm{mix}})$ in the higher order terms. We complement these upper bounds with a non-asymptotic minimax lower bound that establishes the instance-optimality of the averaged SA estimator. We derive corollaries of these results for policy evaluation with Markov noise -- covering the TD($\lambda$) family of algorithms for all $\lambda \in [0, 1)$ -- and linear autoregressive models. Our instance-dependent characterizations open the door to the design of fine-grained model selection procedures for hyperparameter tuning (e.g., choosing the value of $\lambda$ when running the TD($\lambda$) algorithm).
Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.