亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Bots have become increasingly prevalent in the digital sphere and have taken up a proactive role in shaping democratic processes. While previous studies have focused on their influence at the individual level, their potential macro-level impact on communication dynamics is still little understood. This study adopts an information theoretic approach from dynamical systems theory to examine the role of political bots shaping the dynamics of an online political discussion on Twitter. We quantify the components of this dynamic process in terms of its complexity, predictability, and the remaining uncertainty. Our findings suggest that bot activity is associated with increased complexity and uncertainty in the structural dynamics of online political communication. This work serves as a showcase for the use of information-theoretic measures from dynamical systems theory in modeling human-bot dynamics as a computational process that unfolds over time.

相關內容

Machine Learning (ML) is increasingly used to automate impactful decisions, which leads to concerns regarding their correctness, reliability, and fairness. We envision highly-automated software platforms to assist data scientists with developing, validating, monitoring, and analysing their ML pipelines. In contrast to existing work, our key idea is to extract "logical query plans" from ML pipeline code relying on popular libraries. Based on these plans, we automatically infer pipeline semantics and instrument and rewrite the ML pipelines to enable diverse use cases without requiring data scientists to manually annotate or rewrite their code. First, we developed such an abstract ML pipeline representation together with machinery to extract it from Python code. Next, we used this representation to efficiently instrument static ML pipelines and apply provenance tracking, which enables lightweight screening for common data preparation issues. Finally, we built machinery to automatically rewrite ML pipelines to perform more advanced what-if analyses and proposed using multi-query optimisation for the resulting workloads. In future work, we aim to interactively assist data scientists as they work on their ML pipelines.

Recent studies suggest that with sufficiently wide models, most SGD solutions can, up to permutation, converge into the same basin. This phenomenon, known as the model re-basin regime, has significant implications for model averaging by ensuring the linear mode connectivity. However, current re-basin strategies are ineffective in many scenarios due to a lack of comprehensive understanding of underlying mechanisms. Addressing this gap, this paper provides novel insights into understanding and improving the standard practice. Firstly, we decompose re-normalization into rescaling and reshift, uncovering that rescaling plays a crucial role in re-normalization while re-basin performance is sensitive to shifts in model activation. The finding calls for a more nuanced handling of the activation shift. Secondly, we identify that the merged model suffers from the issue of activation collapse and magnitude collapse. Varying the learning rate, weight decay, and initialization method can mitigate the issues and improve model performance. Lastly, we propose a new perspective to unify the re-basin and pruning, under which a lightweight yet effective post-pruning technique is derived, which can significantly improve the model performance after pruning. Our implementation is available at //github.com/XingyuQu/rethink-re-basin.

AI systems can take harmful actions and are highly vulnerable to adversarial attacks. We present an approach, inspired by recent advances in representation engineering, that interrupts the models as they respond with harmful outputs with "circuit breakers." Existing techniques aimed at improving alignment, such as refusal training, are often bypassed. Techniques such as adversarial training try to plug these holes by countering specific attacks. As an alternative to refusal training and adversarial training, circuit-breaking directly controls the representations that are responsible for harmful outputs in the first place. Our technique can be applied to both text-only and multimodal language models to prevent the generation of harmful outputs without sacrificing utility -- even in the presence of powerful unseen attacks. Notably, while adversarial robustness in standalone image recognition remains an open challenge, circuit breakers allow the larger multimodal system to reliably withstand image "hijacks" that aim to produce harmful content. Finally, we extend our approach to AI agents, demonstrating considerable reductions in the rate of harmful actions when they are under attack. Our approach represents a significant step forward in the development of reliable safeguards to harmful behavior and adversarial attacks.

Ensuring that AI systems reliably and robustly avoid harmful or dangerous behaviours is a crucial challenge, especially for AI systems with a high degree of autonomy and general intelligence, or systems used in safety-critical contexts. In this paper, we will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI. The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees. This is achieved by the interplay of three core components: a world model (which provides a mathematical description of how the AI system affects the outside world), a safety specification (which is a mathematical description of what effects are acceptable), and a verifier (which provides an auditable proof certificate that the AI satisfies the safety specification relative to the world model). We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them. We also argue for the necessity of this approach to AI safety, and for the inadequacy of the main alternative approaches.

Grounding external knowledge can enhance the factuality of responses in dialogue generation. However, excessive emphasis on it might result in the lack of engaging and diverse expressions. Through the introduction of randomness in sampling, current approaches can increase the diversity. Nevertheless, such sampling method could undermine the factuality in dialogue generation. In this study, to discover a solution for advancing creativity without relying on questionable randomness and to subtly reconcile the factuality and diversity within the source-grounded paradigm, a novel method named DoGe is proposed. DoGe can dynamically alternate between the utilization of internal parameter knowledge and external source knowledge based on the model's factual confidence. Extensive experiments on three widely-used datasets show that DoGe can not only enhance response diversity but also maintain factuality, and it significantly surpasses other various decoding strategy baselines.

Identifying causal effects is a key problem of interest across many disciplines. The two long-standing approaches to estimate causal effects are observational and experimental (randomized) studies. Observational studies can suffer from unmeasured confounding, which may render the causal effects unidentifiable. On the other hand, direct experiments on the target variable may be too costly or even infeasible to conduct. A middle ground between these two approaches is to estimate the causal effect of interest through proxy experiments, which are conducted on variables with a lower cost to intervene on compared to the main target. Akbari et al. [2022] studied this setting and demonstrated that the problem of designing the optimal (minimum-cost) experiment for causal effect identification is NP-complete and provided a naive algorithm that may require solving exponentially many NP-hard problems as a sub-routine in the worst case. In this work, we provide a few reformulations of the problem that allow for designing significantly more efficient algorithms to solve it as witnessed by our extensive simulations. Additionally, we study the closely-related problem of designing experiments that enable us to identify a given effect through valid adjustments sets.

The true power of computational research typically can lay in either what it accomplishes or what it enables others to accomplish. In this work, both avenues are simultaneously embraced across several distinct efforts existing at three general scales of abstractions of what a material is - atomistic, physical, and design. At each, an efficient materials informatics infrastructure is being built from the ground up based on (1) the fundamental understanding of the underlying prior knowledge, including the data, (2) deployment routes that take advantage of it, and (3) pathways to extend it in an autonomous or semi-autonomous fashion, while heavily relying on artificial intelligence (AI) to guide well-established DFT-based ab initio and CALPHAD-based thermodynamic methods. The resulting multi-level discovery infrastructure is highly generalizable as it focuses on encoding problems to solve them easily rather than looking for an existing solution. To showcase it, this dissertation discusses the design of multi-alloy functionally graded materials (FGMs) incorporating ultra-high temperature refractory high entropy alloys (RHEAs) towards gas turbine and jet engine efficiency increase reducing CO2 emissions, as well as hypersonic vehicles. It leverages a new graph representation of underlying mathematical space using a newly developed algorithm based on combinatorics, not subject to many problems troubling the community. Underneath, property models and phase relations are learned from optimized samplings of the largest and highest quality dataset of HEA in the world, called ULTERA. At the atomistic level, a data ecosystem optimized for machine learning (ML) from over 4.5 million relaxed structures, called MPDD, is used to inform experimental observations and improve thermodynamic models by providing stability data enabled by a new efficient featurization framework.

We prove weak convergence of order one for a class of exponential based integrators for SDEs with non-globally Lipschtiz drift. Our analysis covers tamed versions of Geometric Brownian Motion (GBM) based methods as well as the standard exponential schemes. The numerical performance of both the GBM and exponential tamed methods through four different multi-level Monte Carlo techniques are compared. We observe that for linear noise the standard exponential tamed method requires severe restrictions on the stepsize unlike the GBM tamed method.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Interest point descriptors have fueled progress on almost every problem in computer vision. Recent advances in deep neural networks have enabled task-specific learned descriptors that outperform hand-crafted descriptors on many problems. We demonstrate that commonly used metric learning approaches do not optimally leverage the feature hierarchies learned in a Convolutional Neural Network (CNN), especially when applied to the task of geometric feature matching. While a metric loss applied to the deepest layer of a CNN, is often expected to yield ideal features irrespective of the task, in fact the growing receptive field as well as striding effects cause shallower features to be better at high precision matching tasks. We leverage this insight together with explicit supervision at multiple levels of the feature hierarchy for better regularization, to learn more effective descriptors in the context of geometric matching tasks. Further, we propose to use activation maps at different layers of a CNN, as an effective and principled replacement for the multi-resolution image pyramids often used for matching tasks. We propose concrete CNN architectures employing these ideas, and evaluate them on multiple datasets for 2D and 3D geometric matching as well as optical flow, demonstrating state-of-the-art results and generalization across datasets.

北京阿比特科技有限公司