We consider the Max-$3$-Section problem, where we are given an undirected graph $ G=(V,E)$ equipped with non-negative edge weights $w :E\rightarrow \mathbb{R}_+$ and the goal is to find a partition of $V$ into three equisized parts while maximizing the total weight of edges crossing between different parts. Max-$3$-Section is closely related to other well-studied graph partitioning problems, e.g., Max-$k$-Cut, Max-$3$-Cut, and Max-Bisection. We present a polynomial time algorithm achieving an approximation of $ 0.795$, that improves upon the previous best known approximation of $ 0.673$. The requirement of multiple parts that have equal sizes renders Max-$3$-Section much harder to cope with compared to, e.g., Max-Bisection. We show a new algorithm that combines the existing approach of Lassere hierarchy along with a random cut strategy that suffices to give our result.
The hitting set problem asks for a collection of sets over a universe $U$ to find a minimum subset of $U$ that intersects each of the given sets. It is NP-hard and equivalent to the problem set cover. We give a branch-and-bound algorithm to solve hitting set. Though it requires exponential time in the worst case, it can solve many practical instances from different domains in reasonable time. Our algorithm outperforms a modern ILP solver, the state-of-the-art for hitting set, by at least an order of magnitude on most instances.
The problem of deciding whether a biconnected planar digraph $G=(V,E)$ can be augmented to become an $st$-planar graph by adding a set of oriented edges $E' \subseteq V \times V$ is known to be NP-complete. We show that the problem is fixed-parameter tractable when parameterized by the size of the set $E'$.
We study temporal analogues of the Unrestricted Vertex Separator problem from the static world. An $(s,z)$-temporal separator is a set of vertices whose removal disconnects vertex $s$ from vertex $z$ for every time step in a temporal graph. The $(s,z)$-Temporal Separator problem asks to find the minimum size of an $(s,z)$-temporal separator for the given temporal graph. We introduce a generalization of this problem called the $(s,z,t)$-Temporal Separator problem, where the goal is to find a smallest subset of vertices whose removal eliminates all temporal paths from $s$ to $z$ which take less than $t$ time steps. Let $\tau$ denote the number of time steps over which the temporal graph is defined (we consider discrete time steps). We characterize the set of parameters $\tau$ and $t$ when the problem is $\mathcal{NP}$-hard and when it is polynomial time solvable. Then we present a $\tau$-approximation algorithm for the $(s,z)$-Temporal Separator problem and convert it to a $\tau^2$-approximation algorithm for the $(s,z,t)$-Temporal Separator problem. We also present an inapproximability lower bound of $\Omega(\ln(n) + \ln(\tau))$ for the $(s,z,t)$-Temporal Separator problem assuming that $\mathcal{NP}\not\subset\mbox{\sc Dtime}(n^{\log\log n})$. Then we consider three special families of graphs: (1) graphs of branchwidth at most $2$, (2) graphs $G$ such that the removal of $s$ and $z$ leaves a tree, and (3) graphs of bounded pathwidth. We present polynomial-time algorithms to find a minimum $(s,z,t)$-temporal separator for (1) and (2). As for (3), we show a polynomial-time reduction from the Discrete Segment Covering problem with bounded-length segments to the $(s,z,t)$-Temporal Separator problem where the temporal graph has bounded pathwidth.
Semantic parsing of user-generated instructional text, in the way of enabling end-users to program the Internet of Things (IoT), is an underexplored area. In this study, we provide a unique annotated corpus which aims to support the transformation of cooking recipe instructions to machine-understandable commands for IoT devices in the kitchen. Each of these commands is a tuple capturing the semantics of an instruction involving a kitchen device in terms of "What", "Where", "Why" and "How". Based on this corpus, we developed machine learning-based sequence labelling methods, namely conditional random fields (CRF) and a neural network model, in order to parse recipe instructions and extract our tuples of interest from them. Our results show that while it is feasible to train semantic parsers based on our annotations, most natural-language instructions are incomplete, and thus transforming them into formal meaning representation, is not straightforward.
We prove that there exist infinitely many coprime numbers $a$, $b$, $c$ with $a+b=c$ and $c>\operatorname{rad}(abc)\exp(6.563\sqrt{\log c}/\log\log c)$. These are the most extremal examples currently known in the $abc$ conjecture, thereby providing a new lower bound on the tightest possible form of the conjecture. This builds on work of van Frankenhuysen (1999) who proved the existence of examples satisfying the above bound with the constant $6.068$ in place of $6.563$. We show that the constant $6.563$ may be replaced by $4\sqrt{2\delta/e}$ where $\delta$ is a constant such that all full-rank unimodular lattices of sufficiently large dimension $n$ contain a nonzero vector with $\ell_1$ norm at most $n/\delta$.
We present a generalisation of the theory of quantitative algebras of Mardare, Panangaden and Plotkin where (i) the carriers of quantitative algebras are not restricted to be metric spaces and can be arbitrary fuzzy relations or generalised metric spaces, and (ii) the interpretations of the algebraic operations are not required to be nonexpansive. Our main results include: a novel sound and complete proof system, the proof that free quantitative algebras always exist, the proof of strict monadicity of the induced Free-Forgetful adjunction, the result that all monads (on fuzzy relations) that lift finitary monads (on sets) admit a quantitative equational presentation.
In this work, the problem of shape optimization, subject to PDE constraints, is reformulated as an $L^p$ best approximation problem under divergence constraints to the shape tensor introduced in Laurain and Sturm: ESAIM Math. Model. Numer. Anal. 50 (2016). More precisely, the main result of this paper states that the $L^p$ distance of the above approximation problem is equal to the dual norm of the shape derivative considered as a functional on $W^{1,p^\ast}$ (where $1/p + 1/p^\ast = 1$). This implies that for any given shape, one can evaluate its distance from being a stationary one with respect to the shape derivative by simply solving the associated $L^p$-type least mean approximation problem. Moreover, the Lagrange multiplier for the divergence constraint turns out to be the shape deformation of steepest descent. This provides a way, as an alternative to the approach by Deckelnick, Herbert and Hinze: ESAIM Control Optim. Calc. Var. 28 (2022), for computing shape gradients in $W^{1,p^\ast}$ for $p^\ast \in ( 2 , \infty )$. The discretization of the least mean approximation problem is done with (lowest-order) matrix-valued Raviart-Thomas finite element spaces leading to piecewise constant approximations of the shape deformation acting as Lagrange multiplier. Admissible deformations in $W^{1,p^\ast}$ to be used in a shape gradient iteration are reconstructed locally. Our computational results confirm that the $L^p$ distance of the best approximation does indeed measure the distance of the considered shape to optimality. Also confirmed by our computational tests are the observations that choosing $p^\ast$ (much) larger than 2 (which means that $p$ must be close to 1 in our best approximation problem) decreases the chance of encountering mesh degeneracy during the shape gradient iteration.
Join-preserving maps on the discrete time scale $\omega^+$, referred to as time warps, have been proposed as graded modalities that can be used to quantify the growth of information in the course of program execution. The set of time warps forms a simple distributive involutive residuated lattice -- called the time warp algebra -- that is equipped with residual operations relevant to potential applications. In this paper, we show that although the time warp algebra generates a variety that lacks the finite model property, it nevertheless has a decidable equational theory. We also describe an implementation of a procedure for deciding equations in this algebra, written in the OCaml programming language, that makes use of the Z3 theorem prover.
We present a self-supervised variational autoencoder (VAE) to jointly learn disentangled and dependent hidden factors and then enhance disentangled representation learning by a self-supervised classifier to eliminate coupled representations in a contrastive manner. To this end, a Contrastive Copula VAE (C$^2$VAE) is introduced without relying on prior knowledge about data in the probabilistic principle and involving strong modeling assumptions on the posterior in the neural architecture. C$^2$VAE simultaneously factorizes the posterior (evidence lower bound, ELBO) with total correlation (TC)-driven decomposition for learning factorized disentangled representations and extracts the dependencies between hidden features by a neural Gaussian copula for copula coupled representations. Then, a self-supervised contrastive classifier differentiates the disentangled representations from the coupled representations, where a contrastive loss regularizes this contrastive classification together with the TC loss for eliminating entangled factors and strengthening disentangled representations. C$^2$VAE demonstrates a strong effect in enhancing disentangled representation learning. C$^2$VAE further contributes to improved optimization addressing the TC-based VAE instability and the trade-off between reconstruction and representation.
We define an extension of the posterior predictive $p$-value for multiple test statistics and establish a bound on its frequency under the assumption of model correctness. We argue that the conservativity of the posterior predictive $p$-value increases with model dimension, and we demonstrate the ability of the joint $p$-value to overcome this problem in many cases. We also compare the joint $p$-values to other alternative $p$-values designed to have higher power and show that the joint $p$-value can achieve similar performance for model rejection while maintaining more favorable computational and interpretive properties.