亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Analysis of a network in terms of vulnerability is one of the most significant problems. Graph theory serves as a valuable tool for solving complex network problems, and there exist numerous graph-theoretic parameters to analyze the system's stability. Among these parameters, the closeness parameter stands out as one of the most commonly used vulnerability metric. Its definition has evolved over time to enhance ease of formulation and applicability to disconnected structures. Furthermore, based on the closeness parameter, residual closeness, which is a newer and more sensitive parameter compared to other existing parameters, has been introduced as a new graph vulnerability index by Dangalchev. In this study, the outcomes of the closeness and residual closeness parameters in Harary Graphs have been examined. Harary Graphs are well-known constructs that are distinguished by having $n$ vertices that are $k$-connected with the least possible number of edges.

相關內容

We study the problem of zero-delay coding of a Markov source over a noisy channel with feedback. We first formulate the problem as a Markov decision process (MDP) where the state is a previous belief term along with a finite memory of channel outputs and quantizers. We then approximate this state by marginalizing over all possible beliefs, so that our policies only use the finite-memory term to encode the source. Under an appropriate notion of predictor stability, we show that such policies are near-optimal for the zero-delay coding problem as the memory length increases. We also give sufficient conditions for predictor stability to hold, and propose a reinforcement learning algorithm to compute near-optimal finite-memory policies. These theoretical results are supported by simulations.

The essential activities such as communication via email, surfing the world wide web, watching ones preferred Film or television series a large majority of people impaired by neurolocomotor disorders including those paralyzed by accident do not access machines. It was inferred from a previous research review those eyeballs are really an exceptional contender for pervasive computers because eyeballs switch involuntary through accordance via computer equipment. It may be important to use this underlying information from eye motions to carry the use of machines back to those patients. We suggest an Eye-Gaze Cursor control device for this function that is fully controlled only with the use of eyeballs. Goal of this project is to develop a easy to use eye-gesture control device which will detect eye movements robustly and allow the person to use a computer webcam in accordance to the behavior mirroring to specific eye movements/gestures. It distinguishes the pupil from the face of the user and then controls its gestures. In real-time, it has to be specific enough that the user can use it with ease like most daily gadgets.

Numerous approaches have attempted to interpret deep neural networks (DNNs) by attributing the prediction of DNN to its input features. One of the well-studied attribution methods is Integrated Gradients (IG). Specifically, the choice of baselines for IG is a critical consideration for generating meaningful and unbiased explanations for model predictions in different scenarios. However, current practice of exploiting a single baseline fails to fulfill this ambition, thus demanding multiple baselines. Fortunately, the inherent connection between IG and Aumann-Shapley Value forms a unique perspective to rethink the design of baselines. Under certain hypothesis, we theoretically analyse that a set of baseline aligns with the coalitions in Shapley Value. Thus, we propose a novel baseline construction method called Shapley Integrated Gradients (SIG) that searches for a set of baselines by proportional sampling to partly simulate the computation path of Shapley Value. Simulations on GridWorld show that SIG approximates the proportion of Shapley Values. Furthermore, experiments conducted on various image tasks demonstrate that compared to IG using other baseline methods, SIG exhibits an improved estimation of feature's contribution, offers more consistent explanations across diverse applications, and is generic to distinct data types or instances with insignificant computational overhead.

We study the optimal order (or sequence) of contracting a tensor network with a minimal computational cost. We conclude 2 different versions of this optimal sequence: that minimize the operation number (OMS) and that minimize the time complexity (CMS). Existing results only shows that OMS is NP-hard, but no conclusion on CMS problem. In this work, we firstly reduce CMS to CMS-0, which is a sub-problem of CMS with no free indices. Then we prove that CMS is easier than OMS, both in general and in tree cases. Last but not least, we prove that CMS is still NP-hard. Based on our results, we have built up relationships of hardness of different tensor network contraction problems.

We investigate a novel modeling approach for end-to-end neural network training using hidden Markov models (HMM) where the transition probabilities between hidden states are modeled and learned explicitly. Most contemporary sequence-to-sequence models allow for from-scratch training by summing over all possible label segmentations in a given topology. In our approach there are explicit, learnable probabilities for transitions between segments as opposed to a blank label that implicitly encodes duration statistics. We implement a GPU-based forward-backward algorithm that enables the simultaneous training of label and transition probabilities. We investigate recognition results and additionally Viterbi alignments of our models. We find that while the transition model training does not improve recognition performance, it has a positive impact on the alignment quality. The generated alignments are shown to be viable targets in state-of-the-art Viterbi trainings.

Recent years have shown an increased development of methods for justifying the predictions of neural networks through visual explanations. These explanations usually take the form of heatmaps which assign a saliency (or relevance) value to each pixel of the input image that expresses how relevant the pixel is for the prediction of a label. Complementing this development, evaluation methods have been proposed to assess the "goodness" of such explanations. On the one hand, some of these methods rely on synthetic datasets. However, this introduces the weakness of having limited guarantees regarding their applicability on more realistic settings. On the other hand, some methods rely on metrics for objective evaluation. However the level to which some of these evaluation methods perform with respect to each other is uncertain. Taking this into account, we conduct a comprehensive study on a subset of the ImageNet-1k validation set where we evaluate a number of different commonly-used explanation methods following a set of evaluation methods. We complement our study with sanity checks on the studied evaluation methods as a means to investigate their reliability and the impact of characteristics of the explanations on the evaluation methods. Results of our study suggest that there is a lack of coherency on the grading provided by some of the considered evaluation methods. Moreover, we have identified some characteristics of the explanations, e.g. sparsity, which can have a significant effect on the performance.

What is learned by sophisticated neural network agents such as AlphaZero? This question is of both scientific and practical interest. If the representations of strong neural networks bear no resemblance to human concepts, our ability to understand faithful explanations of their decisions will be restricted, ultimately limiting what we can achieve with neural network interpretability. In this work we provide evidence that human knowledge is acquired by the AlphaZero neural network as it trains on the game of chess. By probing for a broad range of human chess concepts we show when and where these concepts are represented in the AlphaZero network. We also provide a behavioural analysis focusing on opening play, including qualitative analysis from chess Grandmaster Vladimir Kramnik. Finally, we carry out a preliminary investigation looking at the low-level details of AlphaZero's representations, and make the resulting behavioural and representational analyses available online.

Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.

Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their most significant impact has been in the area of computer vision where great advances have been made in challenges such as plausible image generation, image-to-image translation, facial attribute manipulation and similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems still poses significant challenges, three of which we focus on here. These are: (1) the generation of high quality images, (2) diversity of image generation, and (3) stable training. Focusing on the degree to which popular GAN technologies have made progress against these challenges, we provide a detailed review of the state of the art in GAN-related research in the published scientific literature. We further structure this review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss functions. While several reviews for GANs have been presented to date, none have considered the status of this field based on their progress towards addressing practical challenges relevant to computer vision. Accordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status of GAN research in terms of relevant progress towards important computer vision application requirements. As we do this we also discuss the most compelling applications in computer vision in which GANs have demonstrated considerable success along with some suggestions for future research directions. Code related to GAN-variants studied in this work is summarized on //github.com/sheqi/GAN_Review.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司