亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Within the area of speech enhancement, there is an ongoing interest in the creation of neural systems which explicitly aim to improve the perceptual quality of the processed audio. In concert with this is the topic of non-intrusive (i.e. without clean reference) speech quality prediction, for which neural networks are trained to predict human-assigned quality labels directly from distorted audio. When combined, these areas allow for the creation of powerful new speech enhancement systems which can leverage large real-world datasets of distorted audio, by taking inference of a pre-trained speech quality predictor as the sole loss function of the speech enhancement system. This paper aims to identify a potential pitfall with this approach, namely hallucinations which are introduced by the enhancement system `tricking' the speech quality predictor.

相關內容

語音增強是指當語音信號被各種各樣的噪聲干擾、甚至淹沒后,從噪聲背景中提取有用的語音信號,抑制、降低噪聲干擾的技術。一句話,從含噪語音中提取盡可能純凈的原始語音。

In the space sector, due to environmental conditions and restricted accessibility, robust fault detection methods are imperative for ensuring mission success and safeguarding valuable assets. This work proposes a novel approach leveraging Physics-Informed Real NVP neural networks, renowned for their ability to model complex and high-dimensional distributions, augmented with a self-supervised task based on sensors' data permutation. It focuses on enhancing fault detection within the satellite multivariate time series. The experiments involve various configurations, including pre-training with self-supervision, multi-task learning, and standalone self-supervised training. Results indicate significant performance improvements across all settings. In particular, employing only the self-supervised loss yields the best overall results, suggesting its efficacy in guiding the network to extract relevant features for fault detection. This study presents a promising direction for improving fault detection in space systems and warrants further exploration in other datasets and applications.

As the number of large language models (LLMs) released to the public grows, there is a pressing need to understand the safety implications associated with these models learning from third-party custom finetuning data. We explore the behavior of LLMs finetuned on noisy custom data containing unsafe content, represented by datasets that contain biases, toxicity, and harmfulness, finding that while aligned LLMs can readily learn this unsafe content, they also tend to forget it more significantly than other examples when subsequently finetuned on safer content. Drawing inspiration from the discrepancies in forgetting, we introduce the "ForgetFilter" algorithm, which filters unsafe data based on how strong the model's forgetting signal is for that data. We demonstrate that the ForgetFilter algorithm ensures safety in customized finetuning without compromising downstream task performance, unlike sequential safety finetuning. ForgetFilter outperforms alternative strategies like replay and moral self-correction in curbing LLMs' ability to assimilate unsafe content during custom finetuning, e.g. 75% lower than not applying any safety measures and 62% lower than using self-correction in toxicity score.

When the regressors of a econometric linear model are nonorthogonal, it is well known that their estimation by ordinary least squares can present various problems that discourage the use of this model. The ridge regression is the most commonly used alternative; however, its generalized version has hardly been analyzed. The present work addresses the estimation of this generalized version, as well as the calculation of its mean squared error, goodness of fit and bootstrap inference.

To efficiently find an optimum parameter combination in a large-scale problem, it is a key to convert the parameters into available variables in actual machines. Specifically, quadratic unconstrained binary optimization problems are solved with the help of machine learning, e.g., factorization machines with annealing, which convert a raw parameter to binary variables. This work investigates the dependence of the convergence speed and the accuracy on binary labeling method, which can influence the cost function shape and thus the probability of being captured at a local minimum solution. By exemplifying traveling salesman problem, we propose and evaluate Gray labeling, which correlates the Hamming distance in binary labels with the traveling distance. Through numerical simulation of traveling salesman problem up to 15 cities at a limited number of iterations, the Gray labeling shows less local minima percentages and shorter traveling distances compared with natural labeling.

Generating safe behaviors for autonomous systems is important as they continue to be deployed in the real world, especially around people. In this work, we focus on developing a novel safe controller for systems where there are multiple sources of uncertainty. We formulate a novel multimodal safe control method, called the Multimodal Safe Set Algorithm (MMSSA) for the case where the agent has uncertainty over which discrete mode the system is in, and each mode itself contains additional uncertainty. To our knowledge, this is the first energy-function-based safe control method applied to systems with multimodal uncertainty. We apply our controller to a simulated human-robot interaction where the robot is uncertain of the human's true intention and each potential intention has its own additional uncertainty associated with it, since the human is not a perfectly rational actor. We compare our proposed safe controller to existing safe control methods and find that it does not impede the system performance (i.e. efficiency) while also improving the safety of the system.

Quantum relative entropy programs are convex optimization problems which minimize a linear functional over an affine section of the epigraph of the quantum relative entropy function. Recently, the self-concordance of a natural barrier function was proved for this set. This has opened up the opportunity to use interior-point methods for nonsymmetric cone programs to solve these optimization problems. In this paper, we show how common structures arising from applications in quantum information theory can be exploited to improve the efficiency of solving quantum relative entropy programs using interior-point methods. First, we show that the natural barrier function for the epigraph of the quantum relative entropy composed with positive linear operators is optimally self-concordant, even when these linear operators map to singular matrices. Second, we show how we can exploit a catalogue of common structures in these linear operators to compute the inverse Hessian products of the barrier function more efficiently. This step is typically the bottleneck when solving quantum relative entropy programs using interior-point methods, and therefore improving the efficiency of this step can significantly improve the computational performance of the algorithm. We demonstrate how these methods can be applied to important applications in quantum information theory, including quantum key distribution, quantum rate-distortion, quantum channel capacities, and estimating the ground state energy of Hamiltonians. Our numerical results show that these techniques improve computation times by up to several orders of magnitude, and allow previously intractable problems to be solved.

Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司