亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study extensions of Fr\'{e}chet means for random objects in the space ${\rm Sym}^+(p)$ of $p \times p$ symmetric positive-definite matrices using the scaling-rotation geometric framework introduced by Jung et al. [\textit{SIAM J. Matrix. Anal. Appl.} \textbf{36} (2015) 1180-1201]. The scaling-rotation framework is designed to enjoy a clearer interpretation of the changes in random ellipsoids in terms of scaling and rotation. In this work, we formally define the \emph{scaling-rotation (SR) mean set} to be the set of Fr\'{e}chet means in ${\rm Sym}^+(p)$ with respect to the scaling-rotation distance. Since computing such means requires a difficult optimization, we also define the \emph{partial scaling-rotation (PSR) mean set} lying on the space of eigen-decompositions as a proxy for the SR mean set. The PSR mean set is easier to compute and its projection to ${\rm Sym}^+(p)$ often coincides with SR mean set. Minimal conditions are required to ensure that the mean sets are non-empty. Because eigen-decompositions are never unique, neither are PSR means, but we give sufficient conditions for the sample PSR mean to be unique up to the action of a certain finite group. We also establish strong consistency of the sample PSR means as estimators of the population PSR mean set, and a central limit theorem. In an application to multivariate tensor-based morphometry, we demonstrate that a two-group test using the proposed PSR means can have greater power than the two-group test using the usual affine-invariant geometric framework for symmetric positive-definite matrices.

相關內容

We consider a \emph{family} $(P_\omega)_{\omega \in \Omega}$ of elliptic second order differential operators on a domain $U_0 \subset \RR^m$ whose coefficients depend on the space variable $x \in U_0$ and on $\omega \in \Omega,$ a probability space. We allow the coefficients $a_{ij}$ of $P_\omega$ to have jumps over a fixed interface \Gamma \subset U_0$ (independent of $\omega \in \Omega$). We obtain polynomial in the norms of the coefficients estimates on the norm of the solution $u_\omega$ to the equation $P_\omega u_\omega = f$ with transmission and mixed boundary conditions (we consider ``sign-changing'' problems as well). In particular, we show that, if $f$ and the coefficients $a_{ij}$ are smooth enough and follow a log-normal-type distribution, then the map $\Omega \ni \omega \to \|u_\omega\|_{H^{k+1}(U_0)}$ is in $L^p(\Omega)$, for all $1 \le p < \infty$. The same is true for the norms of the inverses of the resulting operators. We expect our estimates to be useful in Uncertainty Quantification.

We describe a `discretize-then-relax' strategy to globally minimize integral functionals over functions $u$ in a Sobolev space satisfying prescribed Dirichlet boundary conditions. The strategy applies whenever the integral functional depends polynomially on $u$ and its derivatives, even if it is nonconvex. The `discretize' step uses a bounded finite-element scheme to approximate the integral minimization problem with a convergent hierarchy of polynomial optimization problems over a compact feasible set, indexed by the decreasing size $h$ of the finite-element mesh. The `relax' step employs sparse moment-SOS relaxations to approximate each polynomial optimization problem with a hierarchy of convex semidefinite programs, indexed by an increasing relaxation order $\omega$. We prove that, as $\omega\to\infty$ and $h\to 0$, solutions of such semidefinite programs provide approximate minimizers that converge in $L^p$ to the global minimizer of the original integral functional if this is unique. We also report computational experiments that show our numerical strategy works well even when technical conditions required by our theoretical analysis are not satisfied.

Given a property (graph class) $\Pi$, a graph $G$, and an integer $k$, the \emph{$\Pi$-completion} problem consists in deciding whether we can turn $G$ into a graph with the property $\Pi$ by adding at most $k$ edges to $G$. The $\Pi$-completion problem is known to be NP-hard for general graphs when $\Pi$ is the property of being a proper interval graph (PIG). In this work, we study the PIG-completion problem %when $\Pi$ is the class of proper interval graphs (PIG) within different subclasses of chordal graphs. We show that the problem remains NP-complete even when restricted to split graphs. We then turn our attention to positive results and present polynomial time algorithms to solve the PIG-completion problem when the input is restricted to caterpillar and threshold graphs. We also present an efficient algorithm for the minimum co-bipartite-completion for quasi-threshold graphs, which provides a lower bound for the PIG-completion problem within this graph class.

The paper aims to study the performance of the amplitude-based model \newline $\widehat{\mathbf x} \in {\rm argmin}_{{\mathbf x}\in \mathbb{C}^d}\sum_{j=1}^m\left(|\langle {\mathbf a}_j,{\mathbf x}\rangle|-b_j\right)^2$, where $b_j:=|\langle {\mathbf a}_j,{\mathbf x}_0\rangle|+\eta_j$ and ${\mathbf x}_0\in \mathbb{C}^d$ is a target signal. The model is raised in phase retrieval as well as in absolute value rectification neural networks. Many efficient algorithms have been developed to solve it in the past decades. {However, there are very few results available regarding the estimation performance in the complex case under noisy conditions.} In this paper, {we present a theoretical guarantee on the amplitude-based model for the noisy complex phase retrieval problem}. Specifically, we show that $\min_{\theta\in[0,2\pi)}\|\widehat{\mathbf x}-\exp(\mathrm{i}\theta)\cdot{\mathbf x}_0\|_2 \lesssim \frac{\|{\mathbf \eta}\|_2}{\sqrt{m}}$ holds with high probability provided the measurement vectors ${\mathbf a}_j\in \mathbb{C}^d,$ $j=1,\ldots,m,$ are {i.i.d.} complex sub-Gaussian random vectors and $m\gtrsim d$. Here ${\mathbf \eta}=(\eta_1,\ldots,\eta_m)\in \mathbb{R}^m$ is the noise vector without any assumption on the distribution. Furthermore, we prove that the reconstruction error is sharp. For the case where the target signal ${\mathbf x}_0\in \mathbb{C}^{d}$ is sparse, we establish a similar result for the nonlinear constrained $\ell_1$ minimization model. { To accomplish this, we leverage a strong version of restricted isometry property for an operator on the space of simultaneous low-rank and sparse matrices.}

We study the problem of reconstructing the Faber--Schauder coefficients of a continuous function $f$ from discrete observations of its antiderivative $F$. Our approach starts with formulating this problem through piecewise quadratic spline interpolation. We then provide a closed-form solution and an in-depth error analysis. These results lead to some surprising observations, which also throw new light on the classical topic of quadratic spline interpolation itself: They show that the well-known instabilities of this method can be located exclusively within the final generation of estimated Faber--Schauder coefficients, which suffer from non-locality and strong dependence on the initial value and the given data. By contrast, all other Faber--Schauder coefficients depend only locally on the data, are independent of the initial value, and admit uniform error bounds. We thus conclude that a robust and well-behaved estimator for our problem can be obtained by simply dropping the final-generation coefficients from the estimated Faber--Schauder coefficients.

L. Klebanov proved the following theorem. Let $\xi_1, \dots, \xi_n$ be independent random variables. Consider linear forms $L_1=a_1\xi_1+\cdots+a_n\xi_n,$ $L_2=b_1\xi_1+\cdots+b_n\xi_n,$ $L_3=c_1\xi_1+\cdots+c_n\xi_n,$ $L_4=d_1\xi_1+\cdots+d_n\xi_n,$ where the coefficients $a_j, b_j, c_j, d_j$ are real numbers. If the random vectors $(L_1,L_2)$ and $(L_3,L_4)$ are identically distributed, then all $\xi_i$ for which $a_id_j-b_ic_j\neq 0$ for all $j=\overline{1,n}$ are Gaussian random variables. The present article is devoted to an analog of the Klebanov theorem in the case when random variables take values in a locally compact Abelian group and the coefficients of the linear forms are integers.

For terminal value problems of fractional differential equations of order $\alpha \in (0,1)$ that use Caputo derivatives, shooting methods are a well developed and investigated approach. Based on recently established analytic properties of such problems, we develop a new technique to select the required initial values that solves such shooting problems quickly and accurately. Numerical experiments indicate that this new proportional secting technique converges very quickly and accurately to the solution. Run time measurements indicate a speedup factor of between 4 and 10 when compared to the standard bisection method.

Given a surface $\Sigma$ equipped with a set $P$ of marked points, we consider the triangulations of $\Sigma$ with vertex set $P$. The flip-graph of $\Sigma$ whose vertices are these triangulations, and whose edges correspond to flipping arcs appears in the study of moduli spaces and mapping class groups. We consider the number of geodesics in the flip-graph of $\Sigma$ between two triangulations as a function of their distance. We show that this number grows exponentially provided the surface has enough topology, and that in the remaining cases the growth is polynomial.

Given a target distribution $\pi$ and an arbitrary Markov infinitesimal generator $L$ on a finite state space $\mathcal{X}$, we develop three structured and inter-related approaches to generate new reversiblizations from $L$. The first approach hinges on a geometric perspective, in which we view reversiblizations as projections onto the space of $\pi$-reversible generators under suitable information divergences such as $f$-divergences. With different choices of functions $f$, we not only recover nearly all established reversiblizations but also unravel and generate new reversiblizations. Along the way, we unveil interesting geometric results such as bisection properties, Pythagorean identities, parallelogram laws and a Markov chain counterpart of the arithmetic-geometric-harmonic mean inequality governing these reversiblizations. This further serves as motivation for introducing the notion of information centroids of a sequence of Markov chains and to give conditions for their existence and uniqueness. Building upon the first approach, we view reversiblizations as generalized means. In this second approach, we construct new reversiblizations via different natural notions of generalized means such as the Cauchy mean or the dual mean. In the third approach, we combine the recently introduced locally-balanced Markov processes framework and the notion of convex $*$-conjugate in the study of $f$-divergence. The latter offers a rich source of balancing functions to generate new reversiblizations.

The proper conflict-free chromatic number, $\chi_{pcf}(G)$, of a graph $G$ is the least $k$ such that $G$ has a proper $k$-coloring in which for each non-isolated vertex there is a color appearing exactly once among its neighbors. The proper odd chromatic number, $\chi_{o}(G)$, of $G$ is the least $k$ such that $G$ has a proper coloring in which for every non-isolated vertex there is a color appearing an odd number of times among its neighbors. We say that a graph class $\mathcal{G}$ is $\chi_{pcf}$-bounded ($\chi_{o}$-bounded) if there is a function $f$ such that $\chi_{pcf}(G) \leq f(\chi(G))$ ($\chi_{o}(G) \leq f(\chi(G))$) for every $G \in \mathcal{G}$. Caro et al. (2022) asked for classes that are linearly $\chi_{pcf}$-bounded ($\chi_{pcf}$-bounded), and as a starting point, they showed that every claw-free graph $G$ satisfies $\chi_{pcf}(G) \le 2\Delta(G)+1$, which implies $\chi_{pcf}(G) \le 4\chi(G)+1$. They also conjectured that any graph $G$ with $\Delta(G) \ge 3$ satisfies $\chi_{pcf}(G) \le \Delta(G)+1$. In this paper, we improve the bound for claw-free graphs to a nearly tight bound by showing that such a graph $G$ satisfies $\chi_{pcf}(G) \le \Delta(G)+6$, and even $\chi_{pcf}(G) \le \Delta(G)+4$ if it is a quasi-line graph. Moreover, we show that convex-round graphs and permutation graphs are linearly $\chi_{pcf}$-bounded. For these last two results, we prove a lemma that reduces the problem of deciding if a hereditary class is linearly $\chi_{pcf}$-bounded to deciding if the bipartite graphs in the class are $\chi_{pcf}$-bounded by an absolute constant. This lemma complements a theorem of Liu (2022) and motivates us to further study boundedness in bipartite graphs. So among other results, we show that convex bipartite graphs are not $\chi_{o}$-bounded, and a class of bipartite circle graphs that is linearly $\chi_{o}$-bounded but not $\chi_{pcf}$-bounded.

北京阿比特科技有限公司