亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present the Learning for KinoDynamic Tree Expansion (L4KDE) method for kinodynamic planning. Tree-based planning approaches, such as rapidly exploring random tree (RRT), are the dominant approach to finding globally optimal plans in continuous state-space motion planning. Central to these approaches is tree-expansion, the procedure in which new nodes are added into an ever-expanding tree. We study the kinodynamic variants of tree-based planning, where we have known system dynamics and kinematic constraints. In the interest of quickly selecting nodes to connect newly sampled coordinates, existing methods typically cannot optimise to find nodes that have low cost to transition to sampled coordinates. Instead, they use metrics like Euclidean distance between coordinates as a heuristic for selecting candidate nodes to connect to the search tree. We propose L4KDE to address this issue. L4KDE uses a neural network to predict transition costs between queried states, which can be efficiently computed in batch, providing much higher quality estimates of transition cost compared to commonly used heuristics while maintaining almost-surely asymptotic optimality guarantee. We empirically demonstrate the significant performance improvement provided by L4KDE on a variety of challenging system dynamics, with the ability to generalise across different instances of the same model class, and in conjunction with a suite of modern tree-based motion planners.

相關內容

We present Neural Signal Operated Intelligent Robots (NOIR), a general-purpose, intelligent brain-robot interface system that enables humans to command robots to perform everyday activities through brain signals. Through this interface, humans communicate their intended objects of interest and actions to the robots using electroencephalography (EEG). Our novel system demonstrates success in an expansive array of 20 challenging, everyday household activities, including cooking, cleaning, personal care, and entertainment. The effectiveness of the system is improved by its synergistic integration of robot learning algorithms, allowing for NOIR to adapt to individual users and predict their intentions. Our work enhances the way humans interact with robots, replacing traditional channels of interaction with direct, neural communication. Project website: //noir-corl.github.io/.

Mechanistic statistical models are commonly used to study the flow of biological processes. For example, in landscape genetics, the aim is to infer mechanisms that govern gene flow in populations. Existing statistical approaches in landscape genetics do not account for temporal dependence in the data and may be computationally prohibitive. We infer mechanisms with a Bayesian hierarchical dyadic model that scales well with large data sets and that accounts for spatial and temporal dependence. We construct a fully-connected network comprising spatio-temporal data for the dyadic model and use normalized composite likelihoods to account for the dependence structure in space and time. Our motivation for developing a dyadic model was to account for physical mechanisms commonly found in physical-statistical models. However, a numerical solver is not required in our approach because we model first-order changes directly. We apply our methods to ancient human DNA data to infer the mechanisms that affected human movement in Bronze Age Europe.

Large language models (LLMs) are accelerating the development of language-guided robot planners. Meanwhile, symbolic planners offer the advantage of interpretability. This paper proposes a new task that bridges these two trends, namely, multimodal planning problem specification. The aim is to generate a problem description (PD), a machine-readable file used by the planners to find a plan. By generating PDs from language instruction and scene observation, we can drive symbolic planners in a language-guided framework. We propose a Vision-Language Interpreter (ViLaIn), a new framework that generates PDs using state-of-the-art LLM and vision-language models. ViLaIn can refine generated PDs via error message feedback from the symbolic planner. Our aim is to answer the question: How accurately can ViLaIn and the symbolic planner generate valid robot plans? To evaluate ViLaIn, we introduce a novel dataset called the problem description generation (ProDG) dataset. The framework is evaluated with four new evaluation metrics. Experimental results show that ViLaIn can generate syntactically correct problems with more than 99% accuracy and valid plans with more than 58% accuracy.

Quality Assurance (QA) is pivotal in product development. Despite the advent of automated methods, software testing, especially for REST APIs, often involves repetitive tasks. It's notable that more resources are allocated to script tests than in detecting and addressing the actual bugs. Conventional testing methods also struggle to adapt seamlessly to software updates. However, with strides in data science, the concept of a self-reliant testing framework emerges. This framework aims for minimal user intervention and is designed to autonomously execute the entire REST API testing procedure. Our research is centered around realizing this groundbreaking framework.

This study presents a novel deep reinforcement learning (DRL)-based handover (HO) protocol, called DHO, specifically designed to address the persistent challenge of long propagation delays in low-Earth orbit (LEO) satellite networks' HO procedures. DHO skips the Measurement Report (MR) in the HO procedure by leveraging its predictive capabilities after being trained with a pre-determined LEO satellite orbital pattern. This simplification eliminates the propagation delay incurred during the MR phase, while still providing effective HO decisions. The proposed DHO outperforms the legacy HO protocol across diverse network conditions in terms of access delay, collision rate, and handover success rate, demonstrating the practical applicability of DHO in real-world networks. Furthermore, the study examines the trade-off between access delay and collision rate and also evaluates the training performance and convergence of DHO using various DRL algorithms.

This paper introduces SAMAug, a novel visual point augmentation method for the Segment Anything Model (SAM) that enhances interactive image segmentation performance. SAMAug generates augmented point prompts to provide more information about the user's intention to SAM. Starting with an initial point prompt, SAM produces an initial mask, which is then fed into our proposed SAMAug to generate augmented point prompts. By incorporating these extra points, SAM can generate augmented segmentation masks based on both the augmented point prompts and the initial prompt, resulting in improved segmentation performance. We conducted evaluations using four different point augmentation strategies: random sampling, sampling based on maximum difference entropy, maximum distance, and saliency. Experiment results on the COCO, Fundus, COVID QUEx, and ISIC2018 datasets show that SAMAug can boost SAM's segmentation results, especially using the maximum distance and saliency. SAMAug demonstrates the potential of visual prompt augmentation for computer vision. Codes of SAMAug are available at github.com/yhydhx/SAMAug

In their 2006 seminal paper in Distributed Computing, Angluin et al. present a construction that, given any Presburger predicate as input, outputs a leaderless population protocol that decides the predicate. The protocol for a predicate of size $m$ (when expressed as a Boolean combination of threshold and remainder predicates with coefficients in binary) runs in $\mathcal{O}(m \cdot n^2 \log n)$ expected number of interactions, which is almost optimal in $n$. However, the number of states of the protocol is exponential in $m$. Blondin et al. described in STACS 2020 another construction that produces protocols with a polynomial number of states, but exponential expected number of interactions. We present a construction that produces protocols with $\mathcal{O}(m)$ states that run in expected $\mathcal{O}(m^{7} \cdot n^2)$ interactions, optimal in $n$, for all inputs of size $\Omega(m)$. For this we introduce population computers, a carefully crafted generalization of population protocols easier to program, and show that our computers for Presburger predicates can be translated into fast and succinct population protocols.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many machine learning and artificial intelligence applications, such as intelligent search, question-answering, recommendation, and text generation. This paper provides a comprehensive survey of EKG from history, ontology, instance, and application views. Specifically, to characterize EKG thoroughly, we focus on its history, definitions, schema induction, acquisition, related representative graphs/systems, and applications. The development processes and trends are studied therein. We further summarize perspective directions to facilitate future research on EKG.

We describe ACE0, a lightweight platform for evaluating the suitability and viability of AI methods for behaviour discovery in multiagent simulations. Specifically, ACE0 was designed to explore AI methods for multi-agent simulations used in operations research studies related to new technologies such as autonomous aircraft. Simulation environments used in production are often high-fidelity, complex, require significant domain knowledge and as a result have high R&D costs. Minimal and lightweight simulation environments can help researchers and engineers evaluate the viability of new AI technologies for behaviour discovery in a more agile and potentially cost effective manner. In this paper we describe the motivation for the development of ACE0.We provide a technical overview of the system architecture, describe a case study of behaviour discovery in the aerospace domain, and provide a qualitative evaluation of the system. The evaluation includes a brief description of collaborative research projects with academic partners, exploring different AI behaviour discovery methods.

北京阿比特科技有限公司