亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the completely positive discretizations of fractional ordinary differential equations (FODEs) on nonuniform meshes. Making use of the resolvents for nonuniform meshes, we first establish comparison principles for the discretizations. Then we prove some discrete Gr\"onwall inequalities using the comparison principles and careful analysis of the solutions to the time continuous FODEs. Our results do not have any restrictions on the step size ratio. The Gr\"onwall inequalities for dissipative equations can be used to obtain the uniform-in-time error control and decay estimates of the numerical solutions. The Gr\"onwall inequalities are then applied to subdiffusion problems and the time fractional Allen-Cahn equations for illustration.

相關內容

We solve fluid flow problems through a space-time finite element method. The weak form of the Navier-Stokes equations is stabilized using the variational multi-scale formulation. The finite element problem is posed on the "full" space-time domain, considering time as another dimension. We apply this method on two benchmark problems in computational fluid dynamics, namely, lid-driven cavity flow and flow past a circular cylinder. We validate the current method with existing results from literature and show that very large space-time blocks can be solved using our approach.

Many science and engineering applications demand partial differential equations (PDE) evaluations that are traditionally computed with resource-intensive numerical solvers. Neural operator models provide an efficient alternative by learning the governing physical laws directly from data in a class of PDEs with different parameters, but constrained in a fixed boundary (domain). Many applications, such as design and manufacturing, would benefit from neural operators with flexible domains when studied at scale. Here we present a diffeomorphism neural operator learning framework towards developing domain-flexible models for physical systems with various and complex domains. Specifically, a neural operator trained in a shared domain mapped from various domains of fields by diffeomorphism is proposed, which transformed the problem of learning function mappings in varying domains (spaces) into the problem of learning operators on a shared diffeomorphic domain. Meanwhile, an index is provided to evaluate the generalization of diffeomorphism neural operators in different domains by the domain diffeomorphism similarity. Experiments on statics scenarios (Darcy flow, mechanics) and dynamic scenarios (pipe flow, airfoil flow) demonstrate the advantages of our approach for neural operator learning under various domains, where harmonic and volume parameterization are used as the diffeomorphism for 2D and 3D domains. Our diffeomorphism neural operator approach enables strong learning capability and robust generalization across varying domains and parameters.

The main reason for query model's prominence in complexity theory and quantum computing is the presence of concrete lower bounding techniques: polynomial and adversary method. There have been considerable efforts to give lower bounds using these methods, and to compare/relate them with other measures based on the decision tree. We explore the value of these lower bounds on quantum query complexity and their relation with other decision tree based complexity measures for the class of symmetric functions, arguably one of the most natural and basic sets of Boolean functions. We show an explicit construction for the dual of the positive adversary method and also of the square root of private coin certificate game complexity for any total symmetric function. This shows that the two values can't be distinguished for any symmetric function. Additionally, we show that the recently introduced measure of spectral sensitivity gives the same value as both positive adversary and approximate degree for every total symmetric Boolean function. Further, we look at the quantum query complexity of Gap Majority, a partial symmetric function. It has gained importance recently in regard to understanding the composition of randomized query complexity. We characterize the quantum query complexity of Gap Majority and show a lower bound on noisy randomized query complexity (Ben-David and Blais, FOCS 2020) in terms of quantum query complexity. Finally, we study how large certificate complexity and block sensitivity can be as compared to sensitivity for symmetric functions (even up to constant factors). We show tight separations, i.e., give upper bounds on possible separations and construct functions achieving the same.

Error estimates of cubic interpolated pseudo-particle scheme (CIP scheme) for the one-dimensional advection equation with periodic boundary conditions are presented. The CIP scheme is a semi-Lagrangian method involving the piecewise cubic Hermite interpolation. Although it is numerically known that the space-time accuracy of the scheme is third order, its rigorous proof remains an open problem. In this paper, denoting the spatial and temporal mesh sizes by $ h $ and $ \Delta t $ respectively, we prove an error estimate $ O(\Delta t^3 + \frac{h^4}{\Delta t}) $ in $ L^2 $ norm theoretically, which justifies the above-mentioned prediction if $ h = O(\Delta t) $. The proof is based on properties of the interpolation operator; the most important one is that it behaves as the $ L^2 $ projection for the second-order derivatives. We remark that the same strategy perfectly works as well to address an error estimate for the semi-Lagrangian method with the cubic spline interpolation.

Fourth-order variational inequalities are encountered in various scientific and engineering disciplines, including elliptic optimal control problems and plate obstacle problems. In this paper, we consider additive Schwarz methods for solving fourth-order variational inequalities. Based on a unified framework of various finite element methods for fourth-order variational inequalities, we develop one- and two-level additive Schwarz methods. We prove that the two-level method is scalable in the sense that the convergence rate of the method depends on $H/h$ and $H/\delta$ only, where $h$ and $H$ are the typical diameters of an element and a subdomain, respectively, and $\delta$ measures the overlap among the subdomains. This proof relies on a new nonlinear positivity-preserving coarse interpolation operator, the construction of which was previously unknown. To the best of our knowledge, this analysis represents the first investigation into the scalability of the two-level additive Schwarz method for fourth-order variational inequalities. Our theoretical results are verified by numerical experiments.

Boundary value problems involving elliptic PDEs such as the Laplace and the Helmholtz equations are ubiquitous in mathematical physics and engineering. Many such problems can be alternatively formulated as integral equations that are mathematically more tractable. However, an integral-equation formulation poses a significant computational challenge: solving large dense linear systems that arise upon discretization. In cases where iterative methods converge rapidly, existing methods that draw on fast summation schemes such as the Fast Multipole Method are highly efficient and well-established. More recently, linear complexity direct solvers that sidestep convergence issues by directly computing an invertible factorization have been developed. However, storage and computation costs are high, which limits their ability to solve large-scale problems in practice. In this work, we introduce a distributed-memory parallel algorithm based on an existing direct solver named ``strong recursive skeletonization factorization.'' Specifically, we apply low-rank compression to certain off-diagonal matrix blocks in a way that minimizes computation and data movement. Compared to iterative algorithms, our method is particularly suitable for problems involving ill-conditioned matrices or multiple right-hand sides. Large-scale numerical experiments are presented to show the performance of our Julia implementation.

We show new algorithms and constructions over linear delta-matroids. We observe an alternative representation for linear delta-matroids, as a contraction representation over a skew-symmetric matrix. This is equivalent to the more standard "twist representation" up to $O(n^\omega)$-time transformations, but is much more convenient for algorithmic tasks. For instance, the problem of finding a max-weight feasible set now reduces directly to the problem of finding a max-weight basis in a linear matroid. Supported by this representation, we provide new algorithms and constructions over linear delta-matroids. We show that the union and delta-sum of linear delta-matroids define linear delta-matroids, and a representation for the resulting delta-matroid can be constructed in randomized time $O(n^\omega)$. Previously, it was only known that these operations define delta-matroids. We also note that every projected linear delta-matroid can be represented as an elementary projection. This implies that several optimization problems over (projected) linear delta-matroids, including the coverage, delta-coverage, and parity problems, reduce (in their decision versions) to a single $O(n^{\omega})$-time matrix rank computation. Using the methods of Harvey, previously used by Cheung, Lao and Leung for linear matroid parity, we furthermore show how to solve the search versions in the same time. This improves on the $O(n^4)$-time augmenting path algorithm of Geelen, Iwata and Murota. Finally, we consider the maximum-cardinality delta-matroid intersection problem. Using Storjohann's algorithms for symbolic determinants, we show that such a solution can be found in $O(n^{\omega+1})$ time. This is the first polynomial-time algorithm for the problem, solving an open question of Kakimura and Takamatsu.

In a recent work (Dick et al, arXiv:2310.06187), we considered a linear stochastic elasticity equation with random Lam\'e parameters which are parameterized by a countably infinite number of terms in separate expansions. We estimated the expected values over the infinite dimensional parametric space of linear functionals ${\mathcal L}$ acting on the continuous solution $\vu$ of the elasticity equation. This was achieved by truncating the expansions of the random parameters, then using a high-order quasi-Monte Carlo (QMC) method to approximate the high dimensional integral combined with the conforming Galerkin finite element method (FEM) to approximate the displacement over the physical domain $\Omega.$ In this work, as a further development of aforementioned article, we focus on the case of a nearly incompressible linear stochastic elasticity equation. To serve this purpose, in the presence of stochastic inhomogeneous (variable Lam\'e parameters) nearly compressible material, we develop a new locking-free symmetric nonconforming Galerkin FEM that handles the inhomogeneity. In the case of nearly incompressible material, one known important advantage of nonconforming approximations is that they yield optimal order convergence rates that are uniform in the Poisson coefficient. Proving the convergence of the nonconforming FEM leads to another challenge that is summed up in showing the needed regularity properties of $\vu$. For the error estimates from the high-order QMC method, which is needed to estimate the expected value over the infinite dimensional parametric space of ${\mathcal L}\vu,$ we %rely on (Dick et al. 2022). We are required here to show certain regularity properties of $\vu$ with respect to the random coefficients. Some numerical results are delivered at the end.

Effect modification occurs when the impact of the treatment on an outcome varies based on the levels of other covariates known as effect modifiers. Modeling of these effect differences is important for etiological goals and for purposes of optimizing treatment. Structural nested mean models (SNMMs) are useful causal models for estimating the potentially heterogeneous effect of a time-varying exposure on the mean of an outcome in the presence of time-varying confounding. A data-driven approach for selecting the effect modifiers of an exposure may be necessary if these effect modifiers are a priori unknown and need to be identified. Although variable selection techniques are available in the context of estimating conditional average treatment effects using marginal structural models, or in the context of estimating optimal dynamic treatment regimens, all of these methods consider an outcome measured at a single point in time. In the context of an SNMM for repeated outcomes, we propose a doubly robust penalized G-estimator for the causal effect of a time-varying exposure with a simultaneous selection of effect modifiers and use this estimator to analyze the effect modification in a study of hemodiafiltration. We prove the oracle property of our estimator, and conduct a simulation study for evaluation of its performance in finite samples and for verification of its double-robustness property. Our work is motivated by and applied to the study of hemodiafiltration for treating patients with end-stage renal disease at the Centre Hospitalier de l'Universit\'e de Montr\'eal. We apply the proposed method to investigate the effect heterogeneity of dialysis facility on the repeated session-specific hemodiafiltration outcomes.

The current study investigates the asymptotic spectral properties of a finite difference approximation of nonlocal Helmholtz equations with a Caputo fractional Laplacian and a variable coefficient wave number $\mu$, as it occurs when considering a wave propagation in complex media, characterized by nonlocal interactions and spatially varying wave speeds. More specifically, by using tools from Toeplitz and generalized locally Toeplitz theory, the present research delves into the spectral analysis of nonpreconditioned and preconditioned matrix-sequences. We report numerical evidences supporting the theoretical findings. Finally, open problems and potential extensions in various directions are presented and briefly discussed.

北京阿比特科技有限公司